Publications by authors named "Jonathan Cruz"

As an increasing number of Native Hawaiian and Pacific Islander adults move to the continental United States, the development and implementation of resources that promote access to cultural foods and support food sovereignty on the continent is crucial to perpetuate cultural practice and connection to the 'āina (land that feeds). Kalo (taro) is an important cultural food central to Native Hawaiian identity. Native Hawaiians connect their genealogy as far back to the cultivation of kalo and the creation of kalo itself.

View Article and Find Full Text PDF

Pulsed radiofrequency is a well-documented treatment option for multiple painful conditions where pulses of energy are delivered close to neural elements. Since its earliest adoption, this technique has gained increasing acceptance as a minimally invasive procedure, and new applications are evolving. Studies have shown microscopic and biochemical changes that reflect beneficial effects; however, the exact mechanism of action is not yet completely understood.

View Article and Find Full Text PDF

Battery electric vehicles (BEVs) have emerged as a promising alternative to traditional internal combustion engine (ICE) vehicles due to benefits in improved fuel economy, lower operating cost, and reduced emission. BEVs use electric motors rather than fossil fuels for propulsion and typically store electric energy in lithium-ion cells. With rising concerns over fossil fuel depletion and the impact of ICE vehicles on the climate, electric mobility is widely considered as the future of sustainable transportation.

View Article and Find Full Text PDF

Purpose: Delivering linguistically competent care is critical to serving patients who have limited English proficiency (LEP) and represents a key national strategy to help reduce health disparities. Current acceptable standards of communication with patients who have LEP include providers communicating through professional interpretive services or bilingual providers speaking the patients' preferred language directly. This randomized clinical trial tests the effect of patient-provider language concordance on patient satisfaction.

View Article and Find Full Text PDF

Here, we show that point-of-care rapid antigen testing for COVID-19 is feasible to implement in the departure areas of a major airports for same-day travelers and effective in ruling out possible carriers of SARS-CoV-2 in asymptomatic air travelers. This strategy may help to reduce the spread of COVID-19 via air travel.

View Article and Find Full Text PDF

Neutralizing antibodies have become an important tool in treating infectious diseases. Recently, two separate approaches yielded successful antibody treatments for Ebola-one from genetically humanized mice and the other from a human survivor. Here, we describe parallel efforts using both humanized mice and convalescent patients to generate antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, which yielded a large collection of fully human antibodies that were characterized for binding, neutralization, and three-dimensional structure.

View Article and Find Full Text PDF

Harnessing complement-mediated cytotoxicity by therapeutic antibodies has been limited because of dependency on size and density of antigen, structural constraints resulting from orientation of antibody binding, and blockade of complement activation by inhibitors expressed on target cells. We developed a modular bispecific antibody platform that directs the complement-initiating protein C1q to target cells, increases local complement deposition and induces cytotoxicity against target antigens with a wide-range of expression. The broad utility of this approach to eliminate both prokaryotic and eukaryotic cells was demonstrated by pairing a unique C1q-recruiting arm with multiple targeting arms specific for Staphylococcus aureus, Pseudomonas aeruginosa, B-cells and T-cells, indicating applicability for diverse indications ranging from infectious diseases to cancer.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis genome harbors an unusually high number of toxin-antitoxin (TA) systems. These TA systems have been implicated in establishing the nonreplicating persistent state of this pathogen during latent tuberculosis infection. More than half of the M.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems play key roles in bacterial persistence, biofilm formation and stress responses. The MazF toxin from the Escherichia coli mazEF TA system is a sequence- and single-strand-specific endoribonuclease, and many studies have led to the proposal that MazF family members exclusively target mRNA. However, recent data indicate some MazF toxins can cleave specific sites within rRNA in concert with mRNA.

View Article and Find Full Text PDF

Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis.

View Article and Find Full Text PDF

Synthesis and SAR studies of novel triazolobenzazepinones as gamma secretase modulators (GSMs) are presented in this communication. Starting from our azepinone leads, optimization studies toward improving central lowering of Aβ42 led to the discovery of novel benzo-fused azepinones. Several benzazepinones were profiled in vivo and found to lower brain Aβ42 levels in Sprague Dawley rats and transgenic APP-YAC mice in a dose-dependent manner after a single oral dose.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are implicated in the downregulation of bacterial cell growth associated with stress survival and latent tuberculosis infection, yet the activities and intracellular targets of these TA toxins are largely uncharacterized. Here, we use a specialized RNA-seq approach to identify targets of a Mycobacterium tuberculosis VapC TA toxin, VapC-mt4 (also known as VapC4), which have eluded detection using conventional approaches. Distinct from the one other characterized VapC toxin in M.

View Article and Find Full Text PDF

The identification and in vitro and in vivo characterization of a potent SHI-1:2 are described. Kinetic analysis indicated that biaryl inhibitors exhibit slow binding kinetics in isolated HDAC1 and HDAC2 preparations. Delayed histone hyperacetylation and gene expression changes were also observed in cell culture, and histone acetylation was observed in vivo beyond disappearance of drug from plasma.

View Article and Find Full Text PDF

The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood.

View Article and Find Full Text PDF

Objectives: Emergency department (ED) patient satisfaction remains a high priority for many hospitals. Patient surveys are a common tool for measuring patient satisfaction, and process improvement efforts are aimed at improving patient satisfaction scores. In some institutions, patient satisfaction scores can be calculated for each emergency physician (EP).

View Article and Find Full Text PDF

The Mycobacterium tuberculosis genome harbors an unusually large number of toxin-antitoxin (TA) modules. Curiously, over half of these are VapBC (virulence-associated protein) family members. Nonetheless, the cellular target, precise mode of action, and physiological role of the VapC toxins in this important pathogen remain unclear.

View Article and Find Full Text PDF

Synthesis, SAR, and evaluation of aryl triazoles as novel gamma secretase modulators (GSMs) are presented in this communication. Starting from the literature and in-house leads, we evaluated a range of five-membered heterocycles as replacements for olefins commonly found in non-acid GSMs. 1,2,3-C-aryl-triazoles were identified as suitable replacements which exhibited good modulation of γ-secretase activity, excellent pharmacokinetics and good central lowering of Aβ42 in Sprague-Dawley rats.

View Article and Find Full Text PDF

The enzymatic activity of the RelE bacterial toxin component of the Escherichia coli RelBE toxin-antitoxin system has been extensively studied in vitro and to a lesser extent in vivo. These earlier reports revealed that 1) RelE alone does not exhibit mRNA cleavage activity, 2) RelE mediates mRNA cleavage through its association with the ribosome, 3) RelE-mediated mRNA cleavage occurs at the ribosomal A site and, 4) Cleavage of mRNA by RelE exhibits high codon specificity. More specifically, RelE exhibits a preference for the stop codons UAG and UGA and sense codons CAG and UCG in vitro.

View Article and Find Full Text PDF

The development of a novel series of purines as gamma-secretase modulators for potential use in the treatment of Alzheimer's disease is disclosed herein. Optimization of a previously disclosed pyrimidine series afforded a series of potent purine-based gamma-secretase modulators with 300- to 2000-fold in vitro selectivity over inhibition of Notch cleavage and that selectively reduces Alphabeta42 in an APP-YAC transgenic mouse model.

View Article and Find Full Text PDF

Novel α-carboranyl-α-acyloxy-amides were prepared as potential BNCT agents utilizing three component Passerini reaction. Preliminary cytotoxicity of the representative compounds on two brain tumor cell lines (U-87 and A-172) showed no effect on cell viability; an essential requirement for utility as potential BNCT agents.

View Article and Find Full Text PDF

We report herein a novel series of difluoropiperidine acetic acids as modulators of gamma-secretase. Synthesis of 2-aryl-3,3-difluoropiperidine analogs was facilitated by a unique and selective beta-difluorination with Selectfluor. Compounds 1f and 2c were selected for in vivo assessment and demonstrated selective lowering of Abeta42 in a genetically engineered mouse model of APP processing.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group.

View Article and Find Full Text PDF

Inhibitors of class 1 and class 2 histone deacetylase (HDAC) enzymes have shown antitumor activity in human clinical trials. More recently, there has been interest in developing subtype-selective HDAC inhibitors designed to retain anticancer activity while reducing potential side effects. Efforts have been initiated to selectively target HDAC1 given its role in tumor proliferation and survival.

View Article and Find Full Text PDF

The successful application of both solid and solution phase library synthesis, combined with tight integration into the medicinal chemistry effort, resulted in the efficient optimization of a novel structural series of selective HDAC1/HDAC2 inhibitors by the MRL-Boston Parallel Medicinal Chemistry group. An initial lead from a small parallel library was found to be potent and selective in biochemical assays. Advanced compounds were the culmination of iterative library design and possess excellent biochemical and cellular potency, as well as acceptable PK and efficacy in animal models.

View Article and Find Full Text PDF