Publications by authors named "Jonathan Ciencewicki"

Article Synopsis
  • - The study focuses on creating a purified anti-Ebola virus intravenous immunoglobulin (IVIG) from pooled convalescent plasma, leveraging its potential for treating viral diseases like Ebola.
  • - Researchers used an ELISA method to measure immunoglobulin levels and conducted neutralization tests, finding a significant boost in the effectiveness of purified IVIG compared to the pooled plasma.
  • - The results indicated that the purified IVIG improved survival rates in infected mice, suggesting its potential for clinical trials and wider applications against other emerging viruses.
View Article and Find Full Text PDF

Human-plasma-derived immune globulin (IG) is used in augmentation therapy to provide protective levels of antibodies to patients with primary immune deficiency diseases (PIDD) and for prophylaxis against infectious diseases. To maintain the breadth of antibodies necessary for clinical protection, it is important to understand regional patterns of antibody seroprevalence in source plasma from which IG products are manufactured. In this study, source plasma from donation centers in various locations of the Southwestern quarter of the United States was surveyed for antibody titers to hepatitis A virus (HAV), measles virus (MeV), and cytomegalovirus (CMV).

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear.

Methods: We infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates.

View Article and Find Full Text PDF

Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the primary cause of lower respiratory tract infection during childhood and causes severe symptoms in some patients, which may cause hospitalization and death. Mechanisms for differential responses to RSV are unknown. Our objective was to develop an in vitro model of RSV infection to evaluate interindividual variation in response to RSV and identify susceptibility genes.

View Article and Find Full Text PDF

Previous studies have shown that influenza infections increase Toll-like receptor 3 (TLR3) expression and that type I interferons (IFNs) may play a role in this response. This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated primary human airway epithelial cells this study demonstrates that soluble mediators secreted in response to influenza infection upregulate TLR3 expression in naive cells.

View Article and Find Full Text PDF

The increasing number of population-based and epidemiologic associations between oxidant pollutant exposures and cardiopulmonary disease exacerbation, decrements in pulmonary function, and mortality underscores the important detrimental effects of oxidants on public health. Because inhaled oxidants initiate a number of pathologic processes, including inflammation of the airways, which may contribute to the pathogenesis and/or exacerbation of airways disease, it is critical to understand the mechanisms through which exogenous and endogenous oxidants interact with molecules in the cells, tissues, and epithelial lining fluid of the lung. Furthermore, it is clear that interindividual variation in response to a given exposure also exists across an individual lifetime.

View Article and Find Full Text PDF

Despite current regulations, which limit the levels of certain air pollutants, there are still a number of adverse health effects that result from exposure to these agents. Numerous epidemiological studies have noted an association between the levels of air pollution and hospital admissions for a variety of different health reasons, including a number of respiratory diseases, as well as increased morbidity and mortality associated with various respiratory conditions and diseases. Because of the large impact respiratory virus infections have on morbidity and even mortality, it is important to understand whether and how exposure to common air pollutants could exacerbate the susceptibility to and severity of respiratory virus infections.

View Article and Find Full Text PDF

We have previously shown that exposure of respiratory epithelial cells to diesel exhaust (DE) enhances susceptibility to influenza infection and increases the production of interleukin (IL)-6 and interferon (IFN)-beta. The purpose of this study was to confirm and expand upon these in vitro results by assessing the effects of DE exposure on the progression of influenza infection and on development of associated pulmonary immune and inflammatory responses in vivo. BALB/c mice were exposed to air or to DE containing particulate matter at concentrations of 0.

View Article and Find Full Text PDF

Prior exposure of respiratory epithelial cells to an aqueous-trapped solution of diesel exhaust (DE(as)) enhances the susceptibility to influenza infections. Here, we examined the effect of DE(as) on the Toll-like receptor 3 (TLR3) pathway, which is responsible for the recognition of and response to viruses and double-stranded RNA. Flow cytometric and confocal microscopy analyses showed that TLR3 is predominantly expressed in the cytoplasm of respiratory epithelial cells.

View Article and Find Full Text PDF

Several factors, such as age and nutritional status, can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects and replicates in respiratory epithelial cells, which are also a major targets for inhaled DE.

View Article and Find Full Text PDF