IEEE Trans Control Syst Technol
September 2022
This paper presents a method to design a nonholonomic virtual constraint (NHVC) controller that produces multiple distinct stance-phase trajectories for corresponding walking speeds. NHVCs encode velocity-dependent joint trajectories via momenta conjugate to the unactuated degree(s)-of-freedom of the system. We recently introduced a method for designing NHVCs that allow for stable bipedal robotic walking across variable terrain slopes.
View Article and Find Full Text PDFProc IEEE Conf Decis Control
December 2018
Existence of disturbances in unknown environments is a pervasive challenge in robotic locomotion control. Disturbance observers are a class of unknown input observers that have been extensively used for disturbance rejection in numerous robotics applications. In this paper, we extend a class of widely-used nonlinear disturbance observers to underactuated bipedal robots, which are controlled using hybrid zero dynamics-based control schemes.
View Article and Find Full Text PDF