Abnormal cyclic motor pattern (CMP) activity is implicated in colonic dysfunction, but the only tool to evaluate CMP activity, high-resolution colonic manometry (HRCM), remains expensive and not widely accessible. This study aimed to validate body surface colonic mapping (BSCM) through direct correlation with HRCM. Synchronous meal-test recordings were performed in asymptomatic participants with intact colons.
View Article and Find Full Text PDFBackground: Despite evidence that slow-wave dysrhythmia in the stomach is associated with clinical conditions such as gastroparesis and functional dyspepsia, there is still no widely available device for long-term monitoring of gastric electrical signals. Actionable biomarkers of gastrointestinal health are critically needed, and an implantable slow-wave monitoring device could aid in the establishment of causal relationships between symptoms and gastric electrophysiology. Recent developments in the area of wireless implantable gastric monitors demonstrate potential, but additional work and validation are required before this potential can be realized.
View Article and Find Full Text PDFGastrointestinal motility patterns can be mapped via electrical signals measured non-invasively on the body surface. However, short-term (≈ 2-4 h) meal response studies as well as long-term monitoring (≥ 24 h) may be hindered by skin irritation inherent with traditional Ag/AgCl pre-gelled ("wet") electrodes. The aim of this work was to investigate the practical utility of using dry electrodes for GI body-surface electrical measurements.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2022
Gastric disorders are increasingly prevalent, but reliable noninvasive tools to objectively assess gastric function are lacking. Body-surface gastric mapping (BSGM) is a noninvasive method for the detection of gastric electrophysiological features, which are correlated with symptoms in patients with gastroparesis and functional dyspepsia. Previous studies have validated the relationship between serosal and cutaneous recordings from limited number of channels.
View Article and Find Full Text PDFBackground: Cyclic motor patterns (CMP) are the predominant motor pattern in the distal colon, and are important in both health and disease. Their origin, mechanism and relation to bioelectrical slow-waves remain incompletely understood. During abdominal surgery, an increase in the CMP occurs in the distal colon.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
We present an open-source, low-cost, portable, 128-channel bioamplifier module designed specifically for ambulatory, long-term (≥24 hr) monitoring of gastrointestinal (GI) electrical activity. The electronics hardware integrates stateof-the-art, commercial-off-the-shelf components on a custom PCB. Features include on-board data logging, wireless data streaming, subject motion monitoring, and stable operation up to the maximum 2 kHz/channel sampling rate tested.
View Article and Find Full Text PDFObjective: This work validates a novel non-invasive method to identify periods of cyclic motor activity in the colon using multichannel skin-surface electrical recordings on the lower abdominal region, termed electrocolonography (EColG).
Methods: EColG recordings were made from 21 human subjects during a 3 hr meal-response study. A signal processing pipeline based on Continuous Wavelet Transform time-frequency analysis was used to quantify the spectral power in the colonic frequency band ( ≈ 2-6 cycles per minute; cpm) during the fasted and fed states.
Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states.
View Article and Find Full Text PDFObjective: Multi-channel electrical recordings of physiologically generated signals are common to a wide range of biomedical fields. The aim of this work was to develop, validate, and demonstrate the practical utility of a high-quality, low-cost 32/64-channel bioamplifier system with real-time wireless data streaming capability.
Approach: The new 'Intsy' system integrates three main off-the-shelf hardware components: (1) Intan RHD2132 bioamplifier; (2) Teensy 3.
Objective: High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation.
View Article and Find Full Text PDFObjective: The aim of this study was to develop, validate, and apply a fully automated method for reducing large temporally synchronous artifacts present in electrical recordings made from the gastrointestinal (GI) serosa, which are problematic for properly assessing slow wave dynamics. Such artifacts routinely arise in experimental and clinical settings from motion, switching behavior of medical instruments, or electrode array manipulation.
Methods: A novel iterative Covariance-Based Reduction of Artifacts (COBRA) algorithm sequentially reduced artifact waveforms using an updating across-channel median as a noise template, scaled and subtracted from each channel based on their covariance.
Motility of the stomach is in part coordinated by an electrophysiological event called slow waves, which are generated by pacemaker cells called the interstitial cells of Cajal (ICC). In functional motility disorders, which can be associated with a reduction of ICC, dynamic slow wave dysrhythmias can occur. In recent years, high-resolution (HR) mapping techniques have been applied to describe both normal and dysrhythmic slow wave patterns.
View Article and Find Full Text PDFSwarms of insects instrumented with wireless electronic backpacks have previously been proposed for potential use in search and rescue operations. Before deploying such biobot swarms, an effective long-term neural-electric stimulus interface must be established, and the locomotion response to various stimuli quantified. To this end, we studied a variety of pulse types (mono- vs.
View Article and Find Full Text PDFBackground/aims: Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity.
View Article and Find Full Text PDFWe present a novel, fully-automated gastrointestinal spike burst detection algorithm. Following pre-processing with SALPA (Wagenaar and Potter, J. Neurosci.
View Article and Find Full Text PDFThe past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
In this study, novel methods were developed for the in-vivo high-resolution recording and analysis of small intestine bioelectrical activity, using flexible printed-circuit-board (PCB) electrode arrays. Up to 256 simultaneous recordings were made at multiple locations along the porcine small intestine. Data analysis was automated through the application and tuning of the Falling-Edge Variable-Threshold algorithm, achieving 92% sensitivity and a 94% positive-predictive value.
View Article and Find Full Text PDFMicro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities.
View Article and Find Full Text PDFHigh-resolution (HR) multi-electrode mapping has become an important technique for evaluating gastrointestinal (GI) slow wave (SW) behaviors. However, the application and uptake of HR mapping has been constrained by the complex and laborious task of analyzing the large volumes of retrieved data. Recently, a rapid and reliable method for automatically identifying activation times (ATs) of SWs was presented, offering substantial efficiency gains.
View Article and Find Full Text PDFHigh resolution (HR) multi-electrode mapping is increasingly being used to evaluate gastrointestinal slow wave behaviors. To create the HR activation time (AT) maps from gastric serosal electrode recordings that quantify slow wave propagation, it is first necessary to identify the AT of each individual slow wave event. Identifying these ATs has been a time consuming task, because there has previously been no reliable automated detection method.
View Article and Find Full Text PDFWe report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequently, the underlying source signals are separated using the well-known second-order blind identification (SOBI) algorithm.
View Article and Find Full Text PDF