Importance: For hospitalized critically ill adults with suspected sepsis, procalcitonin (PCT) and C-reactive protein (CRP) monitoring protocols can guide the duration of antibiotic therapy, but the evidence of the effect and safety of these protocols remains uncertain.
Objective: To determine whether decisions based on assessment of CRP or PCT safely results in a reduction in the duration of antibiotic therapy.
Design, Setting, And Participants: A multicenter, intervention-concealed randomized clinical trial, involving 2760 adults (≥18 years), in 41 UK National Health Service (NHS) intensive care units, requiring critical care within 24 hours of initiating intravenous antibiotics for suspected sepsis and likely to continue antibiotics for at least 72 hours.
SRSF2 is a prototypical SR protein which plays important roles in the alternative splicing of pre-mRNA. It has been shown to be involved in regulatory pathways for maintaining genomic stability and play important roles in regulating key receptors in the heart. We report here the solution structure of the RNA recognition motifs (RRM) domain of free human SRSF2 (residues 9-101).
View Article and Find Full Text PDFThe serine-arginine rich family of proteins play important roles in the regulation of both constitutive and alternative splicing. SC35 (also known as SFRS2 and PR264) is a member of this family and contains one RNA recognition motif (RRM domain) and a RS domain at the C-terminus which is enriched with arginine and serine residues. SC35 is specifically involved in major regulatory pathways for cell proliferation and cell cycle progression.
View Article and Find Full Text PDFPathological amyloid deposits are mixtures of polypeptides and non-proteinaceous species including heparan sulfate proteoglycans and glycosaminoglycans (GAGs). We describe a procedure in which a (13)C-labelled N-acetyl derivative of the GAG heparin ([(13)C-CH(3)]NAcHep) serves as a useful probe for the analysis of GAG-protein interactions in amyloid using solid-state nuclear magnetic resonance (SSNMR) spectroscopy. NAcHep emulates heparin by enhancing aggregation and altering the fibril morphology of Abeta(1-40), one of the beta-amyloid polypeptides associated with Alzheimer's disease, and alpha-synuclein, the major protein component of Lewy bodies associated with Parkinson's disease.
View Article and Find Full Text PDFThe 52-amino acid transmembrane protein phospholamban (PLB) regulates calcium cycling in cardiac cells by forming a complex with the sarco(endo)plasmic reticulum calcium ATPase (SERCA) and reversibly diminishing the rate of calcium uptake by the sarcoplasmic reticulum. The N-terminal cytoplasmic domain of PLB interacts with the cytoplasmic domain of SERCA, but, in the absence of the enzyme, can also associate with the surface of anionic phospholipid membranes. This work investigates whether the cytoplasmic domain of PLB can also associate with membrane surfaces in the presence of SERCA, and whether such interactions could influence the regulation of the enzyme.
View Article and Find Full Text PDFThe transmembrane protein sarcolipin regulates calcium storage in the sarcoplasmic reticulum of skeletal and cardiac muscle cells by modulating the activity of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs). The highly conserved C-terminal region ((27)RSYQY-COOH) of sarcolipin helps to target the protein to the sarcoplasmic reticulum membrane and may also participate in the regulatory interaction between sarcolipin and SERCA. Here we used solid-state NMR measurements of local protein dynamics to illuminate the direct interaction between the Tyr(29) and Tyr(31) side groups of sarcolipin and skeletal muscle Ca(2+)-ATPase (SERCA1a) embedded in dioleoylphosphatidylcholine bilayers.
View Article and Find Full Text PDFPhospholamban (PLB) and phospholemman (PLM, also called FXYD1) are small transmembrane proteins that interact with P-type ATPases and regulate ion transport in cardiac cells and other tissues. This work has investigated the hypothesis that the cytoplasmic domains of PLB and PLM, when not interacting with their regulatory targets, are stabilized through associations with the surface of the phospholipid membrane. Peptides representing the 35 C-terminal cytoplasmic residues of PLM (PLM(37-72)), the 23 N-terminal cytoplasmic residues of PLB (PLB(1-23)), and the same sequence phosphorylated at Ser-16 (P-PLB(1-23)) were synthesized to examine their interactions with model membranes composed of zwitterionic phosphatidylcholine (PC) lipids alone or in admixture with anionic phosphatidylglycerol (PG) lipids.
View Article and Find Full Text PDFPhospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells. PLB self-associates into pentamers within sodium dodecyl sulfate (SDS) micelles, but the oligomeric status of PLB in SR membranes is not known. This work has shown that a mutant of PLB, with all native cysteine residues replaced by alanine (Ala-PLB), runs as a monomer on SDS-PAGE gels, in agreement with previous studies [Karim et al.
View Article and Find Full Text PDF