Monoclonal antibodies (mAbs) targeting the immune checkpoint anti-programmed cell death protein 1 (aPD-1) have demonstrated impressive benefits for the treatment of some cancers; however, these drugs are not always effective, and we still have a limited understanding of the mechanisms that contribute to their efficacy or lack thereof. We used in vivo imaging to uncover the fate and activity of aPD-1 mAbs in real time and at subcellular resolution in mice. We show that aPD-1 mAbs effectively bind PD-1 tumor-infiltrating CD8 T cells at early time points after administration.
View Article and Find Full Text PDFHerein we describe the synthesis of several fluorescent analogues of the clinically approved microtubule destabilizing agent vinblastine. The evaluated probes are the most potent described and provides the first example of uptake, distribution and live cell imaging using this well known antimitotic agent.
View Article and Find Full Text PDFHerein we describe the development and application of a bioorthogonal fluorogenic chelate linker that can be used for facile creation of labeled imaging agents. The chelate linker is based on the trans-cyclooctene(TCO)-tetrazine(Tz) chemistry platform and incorporates deferoxamine (DFO) as a (89)Zr PET tracer and a BODIPY fluorophore for multimodal imaging. The rapid (<3 min) ligation between mAb-TCO and Tz-BODIPY-DFO chelator is monitored using fluorescence and allows for determination of labeling completion.
View Article and Find Full Text PDFWe have developed a series of new ultrafluorogenic probes in the blue-green region of the visible-light spectrum that display fluorescence enhancement exceeding 11,000-fold. These fluorogenic dyes integrate a coumarin fluorochrome with the bioorthogonal trans-cyclooctene(TCO)-tetrazine chemistry platform. By exploiting highly efficient through-bond energy transfer (TBET), these probes exhibit the highest brightness enhancements reported for any bioorthogonal fluorogenic dyes.
View Article and Find Full Text PDFA new design that intimately connects tetrazine to a BODIPY fluorophore enables exceptionally efficient energy transfer and quenching. Upon reaction of the tetrazine, the brightness of the fluorophore increases more than a thousand-fold, a fluorogenic activation up to two orders of magnitude greater than previously described.
View Article and Find Full Text PDFAlthough the development of chemically induced, self-assembled protein-based materials is rapidly expanding, methods for directing their assembly in solution are sparse, and problems of population heterogeneity remain. By exerting control over the assembly of advanced protein structures, new classes of ordered protein nanomaterials become feasible, affecting numerous applications ranging from therapeutics to nanostructural engineering. Focusing on a protein-based method for modulating the stability of a chemically induced dihydrofolate reductase (DHFR) dimer, we demonstrate the sensitivity of a methotrexate competition assay in determining the change in DHFR-DHFR binding cooperativity via interfacial mutations over a 1.
View Article and Find Full Text PDFWe have demonstrated that nanostructures, and in particular nanorings incorporating a homodimeric enzyme, can be prepared by chemically induced self-assembly of dihydrofolate reductase (DHFR)-histidine triad nucleotide binding 1 (Hint1) fusion proteins. The dimensions of the nanorings were found by static light scattering and atomic force microscopy studies to be dependent on the length and composition of the peptide linking the fusion proteins, ranging in size from 10 to 70 nm in diameter and 64 to 740 kDa. The catalytic efficiency of the nanorings was found to be dependent on ring size, thus suggesting that the arrangement of supermolecular assemblies of enzymes may be used to control their catalytic parameters.
View Article and Find Full Text PDFThe exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction have yet to emerge. Consistent with theoretical models of polymer macrocyclization, we have demonstrated that, in the presence of dimeric methotrexate (bisMTX), wild-type Escherichia coli dihydrofolate reductase (DHFR) molecules tethered together by a flexible peptide linker (ecDHFR(2)) are capable of spontaneously forming highly stable cyclic structures with diameters ranging from 8 to 20 nm.
View Article and Find Full Text PDFIn an effort to elucidate the role of ligand conformation in induced protein dimerization, we synthesized a flexible methotrexate (MTX) dimer, demonstrated its ability to selectively dimerize Escherichia coli dihydrofolate reductase (DHFR), and evaluated the factors regulating its ability to induce cooperative dimerization. Despite known entropic barriers, bis-MTX proved to possess substantial conformational stability in aqueous solution (-3.8 kcal/mol >/= DeltaG(fold) >/= -4.
View Article and Find Full Text PDF