Tumors frequently express unmutated self-tumor-associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA-specific T cell repertoire.
View Article and Find Full Text PDFMechanisms of self-tolerance often result in CD8(+) tumor-infiltrating lymphocytes (TIL) with a hypofunctional phenotype incapable of tumor clearance. Using a transplantable colon carcinoma model, we found that CD8(+) T cells became tolerized in <24 h in an established tumor environment. To define the collective impact of pathways suppressing TIL function, we compared genome-wide mRNA expression of tumor-specific CD8(+) T cells from the tumor and periphery.
View Article and Find Full Text PDFVaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination.
View Article and Find Full Text PDFTumor-associated antigen (TAA)-targeting mimotope peptides exert more prominent immunostimulatory functions than unmodified TAAs, with the caveat that some T-cell clones exhibit a relatively low affinity for TAAs. Combining mimotope-based vaccines with native TAAs in a prime-boost setting significantly improves antitumor immunity.
View Article and Find Full Text PDFVaccination with antigens expressed by tumors is one strategy for stimulating enhanced T-cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that crossreact with the native tumor antigen, resulting in potent antitumor responses.
View Article and Find Full Text PDFImmune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy.
View Article and Find Full Text PDFCancer Immunol Immunother
October 2012
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines.
View Article and Find Full Text PDFIntestinal dendritic cells (DCs) play key roles in mediating tolerance to commensal flora and inflammatory responses against mucosal pathogens. The mechanisms by which intestinal "conditioning" influences human DC responses to microbial stimuli remain poorly understood. Infections with viruses, such as HIV-1, that target mucosal tissue result in intestinal epithelial barrier breakdown and increased translocation of commensal bacteria into the lamina propria (LP).
View Article and Find Full Text PDF