Unlabelled: Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.
View Article and Find Full Text PDFAndrogen receptor (AR) transcriptional reactivation plays a key role in the development and progression of lethal castration-resistant prostate cancer (CRPC). Recurrent alterations in the AR enable persistent AR pathway signaling and drive resistance to the treatment of second-generation antiandrogens. AR F877L, a point mutation in the ligand binding domain of the AR, was identified in patients who acquired resistance to enzalutamide or apalutamide.
View Article and Find Full Text PDFNumerous mechanisms of resistance arise in response to treatment with second-generation androgen receptor (AR) pathway inhibitors in metastatic castration-resistant prostate cancer (mCRPC). Among these, point mutations in the ligand binding domain can transform antagonists into agonists, driving the disease through activation of AR signaling. To address this unmet need, we report the discovery of JNJ-63576253, a next-generation AR pathway inhibitor that potently abrogates AR signaling in models of human prostate adenocarcinoma.
View Article and Find Full Text PDFPersistent androgen receptor (AR) activation drives therapeutic resistance to second-generation AR pathway inhibitors and contributes to the progression of advanced prostate cancer. One resistance mechanism is point mutations in the ligand binding domain of AR that can transform antagonists into agonists. The AR F877L mutation, identified in patients treated with enzalutamide or apalutamide, confers resistance to both enzalutamide and apalutamide.
View Article and Find Full Text PDFCastration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors.
View Article and Find Full Text PDFType-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In this study, type-I collagen is modified to introduce methacrylate groups on the free amines of the lysine residues to create collagen methacrylamide (CMA).
View Article and Find Full Text PDFCanonical WNT signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2(LacZ). Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs.
View Article and Find Full Text PDFRodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors.
View Article and Find Full Text PDFAlthough traditional cardiovascular risk factors 'prime the soil' for atherogenesis systemically, atherosclerosis primarily occurs in a site-specific manner with a predilection towards the inner wall of curvatures and outer wall of bifurcations with sparing of flow-dividers. Wall shear stress is a frictional force exerted parallel to the vessel wall that leads to alteration of the endothelial phenotype, endothelial cell signaling, gene and protein expression leading to a proinflammatory phenotype, reduced nitric oxide availability and disruption of the extracellular matrix, which in turn leads to plaque development. Clinical and experimental data are emerging that suggest the pathobiology associated with abnormal wall shear stress results in atherosclerotic plaque development and progression.
View Article and Find Full Text PDFCytoplasmic inclusions containing alpha-synuclein (alpha-Syn) fibrils, referred to as Lewy bodies (LBs), are the signature neuropathological hallmarks of Parkinson's disease (PD). Although alpha-Syn fibrils can be generated from recombinant alpha-Syn protein in vitro, the production of fibrillar alpha-Syn inclusions similar to authentic LBs in cultured cells has not been achieved. We show here that intracellular alpha-Syn aggregation can be triggered by the introduction of exogenously produced recombinant alpha-Syn fibrils into cultured cells engineered to overexpress alpha-Syn.
View Article and Find Full Text PDF