Learning and execution of complex motor skills are often modulated by sensory feedback and contextual cues arriving across multiple sensory modalities. Vocal motor behaviors, in particular, are primarily influenced by auditory inputs, both during learning and mature vocal production. The importance of auditory input in shaping vocal output has been investigated in several songbird species that acquire their adult song based on auditory exposure to a tutor during development.
View Article and Find Full Text PDFInteractive vocal communication, similar to a human conversation, requires flexible and real-time changes to vocal output in relation to preceding auditory stimuli. These vocal adjustments are essential to ensuring both the suitable timing and content of the interaction. Precise timing of dyadic vocal exchanges has been investigated in a variety of species, including humans.
View Article and Find Full Text PDFThe superior colliculus is a midbrain structure that plays important roles in visually guided behaviors in mammals. Neurons in the superior colliculus receive inputs from retinal ganglion cells but how these inputs are integrated in vivo is unknown. Here, we discovered that high-density electrodes simultaneously capture the activity of retinal axons and their postsynaptic target neurons in the superior colliculus, in vivo.
View Article and Find Full Text PDFDuring vocal exchanges, hearing specific auditory signals can provoke vocal responses or suppress vocalizations to avoid interference. These abilities result in the widespread phenomenon of vocal turn taking, yet little is known about the neural circuitry that regulates the input-dependent timing of vocal replies. Previous work in vocally interacting zebra finches has highlighted the importance of premotor inhibition for precisely timed vocal output.
View Article and Find Full Text PDFVocal turn-taking is a fundamental organizing principle of human conversation but the neural circuit mechanisms that structure coordinated vocal interactions are unknown. The ability to exchange vocalizations in an alternating fashion is also exhibited by other species, including zebra finches. With a combination of behavioral testing, electrophysiological recordings, and pharmacological manipulations we demonstrate that activity within a cortical premotor nucleus orchestrates the timing of calls in socially interacting zebra finches.
View Article and Find Full Text PDFHumans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy.
View Article and Find Full Text PDFThe dichotomy between vocal learners and non-learners is a fundamental distinction in the study of animal communication. Male zebra finches (Taeniopygia guttata) are vocal learners that acquire a song resembling their tutors', whereas females can only produce innate calls. The acoustic structure of short calls, produced by both males and females, is not learned.
View Article and Find Full Text PDFObjective: The purpose of this research was to determine whether negative effects of hearing loss on recall accuracy for spoken narratives can be mitigated by allowing listeners to control the rate of speech input.
Design: Paragraph-length narratives were presented for recall under two listening conditions in a within-participants design: presentation without interruption (continuous) at an average speech-rate of 150 words per minute; and presentation interrupted at periodic intervals at which participants were allowed to pause before initiating the next segment (self-paced).
Study Sample: Participants were 24 adults ranging from 21 to 33 years of age.
Objective: Participants in traditional studies of the effects of context on spoken word recognition have been university undergraduates. When older adults have been included, they have typically been matched with these young adults for verbal ability or years of education. Although this may be a good strategy for eliminating confounding variables, it is not clear how results of these studies may extend to the general population of young and older adults.
View Article and Find Full Text PDFOlder adults with good hearing and with mild-to-moderate hearing loss were tested for comprehension of spoken sentences that required perceptual effort (hearing speech at lower sound levels), and two degrees of cognitive load (sentences with simpler or more complex syntax). Although comprehension accuracy was equivalent for both participant groups and for young adults with good hearing, hearing loss was associated with longer response latencies to the correct comprehension judgments, especially for complex sentences heard at relatively low amplitudes. These findings demonstrate the need to take into account both sensory and cognitive demands of speech materials in older adults' language comprehension.
View Article and Find Full Text PDF