Publications by authors named "Jonathan B Matheny"

Bone marrow lesions (BMLs) are radiologic abnormalities in magnetic resonance images of subchondral bone that are correlated with osteoarthritis. Little is known about the physiologic processes within a BML, although BMLs are associated with mechanical stress, bone tissue microdamage and increased bone remodeling. Here we establish a rabbit model to study the pathophysiology of BMLs.

View Article and Find Full Text PDF

Treatment with sclerostin antibody (romosozumab) increases bone formation while reducing bone resorption, leading to increases in bone volume and bone mineral density. Sclerostin antibody treatment may also provide beneficial changes in trabecular microarchitecture and strength that are not reflected in bone volume and density. Here we use three-dimensional dynamic histomorphometry to determine longitudinal changes in vertebral trabecular microarchitecture in adolescent male cynomolgus monkeys (4-5 years old) treated with sclerostin antibody.

View Article and Find Full Text PDF

Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure.

View Article and Find Full Text PDF

Unicondylar knee replacement systems have been shown to perform comparably to total knee replacements, while being much less surgically invasive. Proper ligament balancing, as well as knee laxity, has been shown to play an important role in optimizing kinematic behavior of these implant systems and improving long-term survival of the implant. This study investigates the effect of different simulated ligament laxity conditions of the anterior cruciate ligament and the posterior cruciate ligament on the resulting anteroposterior and mediolateral contact kinematics for medial and lateral pairs of UKR implants with flat and symmetric ultrahigh-molecular-weight polyethylene inserts during force-controlled ISO-14243-1 knee testing simulation.

View Article and Find Full Text PDF