Publications by authors named "Jonathan Avesar"

A multitude of cell screening assays for diagnostic and research applications rely on quantitative measurements of a sample in the presence of different reagent concentrations. Standard methods rely on microtiter plates of varying well density, which provide simple and standardized sample addressability. However, testing hundreds of chemical dilutions requires complex automation, and typical well volumes of microtiter plates are incompatible with the analysis of a small number of cells.

View Article and Find Full Text PDF

Antibiotic resistance is a major global health concern that requires action across all sectors of society. In particular, to allow conservative and effective use of antibiotics clinical settings require better diagnostic tools that provide rapid determination of antimicrobial susceptibility. We present a method for rapid and scalable antimicrobial susceptibility testing using stationary nanoliter droplet arrays that is capable of delivering results in approximately half the time of conventional methods, allowing its results to be used the same working day.

View Article and Find Full Text PDF

Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice.

View Article and Find Full Text PDF

Here, we review the frontier microfluidic techniques for single cell analysis (SCA), which is important for research of many biological systems. Microfluidics provides high-throughput, high-resolution experiments at low cost and reagent use, making it especially useful for single cell analysis. Recent advancements in the field have made SCA more feasible, improving device throughput and resolution, adding capabilities, and combining different functions to bring forth new assays.

View Article and Find Full Text PDF