Publications by authors named "Jonathan A Kopechek"

Objective: Cell-based therapies have shown significant promise for treating many diseases, including cancer. Current cell therapy manufacturing processes primarily utilize viral transduction to insert genomic material into cells, which has limitations, including variable transduction efficiency and extended processing times. Non-viral transfection techniques are also limited by high variability or reduced molecular delivery efficiency.

View Article and Find Full Text PDF

One of the most common life-saving medical procedures is a red blood cell (RBC) transfusion. Unfortunately, RBCs for transfusion have a limited shelf life after donation due to detrimental storage effects on their morphological and biochemical properties. Inspired by nature, a biomimetics approach was developed to preserve RBCs for long-term storage using compounds found in animals with a natural propensity to survive in a frozen or desiccated state for decades.

View Article and Find Full Text PDF

Continuous-flow acoustofluidic technologies can potentially improve processing of T lymphocytes for cell therapies by addressing the limitations with viral and non-viral delivery methods. The objective of this study was to assess the intracellular delivery efficiency with acoustofluidic treatment compared with that of static ultrasound treatment. Optimization of parameters in acoustofluidic and static configurations was performed by assessing intracellular delivery of a fluorescent compound (calcein) in viable human Jurkat T lymphocytes.

View Article and Find Full Text PDF

Purpose: Pediatric heart failure patients remain in critical need of a dedicated mechanical circulatory support (MCS) solution as development efforts for specific pediatric devices continue to fall behind those for the adult population. The Inspired Pediatric VAD is being developed as a pediatric specific MCS solution to provide up to 30-days of circulatory or respiratory support in a compact modular package that could allow for patient ambulation during treatment.

Methods: Hydrodynamic performance (flows, pressures), impeller/rotor mechanical properties (torques, forces), and flow shear stress and residence time distributions of the latest design version, Inspired Pediatric VAD V3, were numerically predicted and investigated using computational fluid dynamics (CFD) software (SolidWorks Flow Simulator).

View Article and Find Full Text PDF

Cell-based therapies have garnered significant interest to treat cancer and other diseases. Acoustofluidic technologies are in development to improve cell therapy manufacturing by facilitating rapid molecular delivery across the plasma membrane via ultrasound and microbubbles (MBs). In this study, a three-dimensional (3D) printed acoustofluidic device was used to deliver a fluorescent molecule, calcein, to human T cells.

View Article and Find Full Text PDF

Purpose: Despite the availability of first-generation extracorporeal mechanical circulatory support (MCS) systems that are widely used throughout the world, there is a need for the next generation of smaller, more portable devices (designed without cables and a minimal number of connectors) that can be used in all in-hospital and transport settings to support patients in heart failure. Moreover, a system that can be universally used for all indications for use including cardiopulmonary bypass (CPB), uni- or biventricular support (VAD), extracorporeal membrane oxygenation (ECMO) and respiratory assist that is suitable for use for adult, neonate, and pediatric patients is desirable. Providing a single, well designed, universal technology could reduce the incidence of human errors by limiting the need for training of hospital staff on a single system for a variety of indications throughout the hospital rather than having to train on multiple complex systems.

View Article and Find Full Text PDF

The nervous system coordinates pathways and circuits to process sensory information and govern motor behaviors. Mapping these pathways is important to further understand the connectivity throughout the nervous system and is vital for developing treatments for neuronal diseases and disorders. We targeted long ascending propriospinal neurons (LAPNs) in the rat spinal cord utilizing Fluoro-Ruby (FR) [10kD rhodamine dextran amine (RDA)], and two dual-viral systems.

View Article and Find Full Text PDF

Efficient intracellular delivery of biomolecules is required for a broad range of biomedical research and cell-based therapeutic applications. Ultrasound-mediated sonoporation is an emerging technique for rapid intracellular delivery of biomolecules. Sonoporation occurs when cavitation of gas-filled microbubbles forms transient pores in nearby cell membranes, which enables rapid uptake of biomolecules from the surrounding fluid.

View Article and Find Full Text PDF

Despite recent advances in biostabilization, clinical blood supplies still experience shortages and storage limitations for red blood cells (RBCs) have not yet been sufficiently addressed. Storing RBCs in a frozen or dried state is an appealing solution to address storage limitations, but many promising cryoprotectants, including the non-reducing sugar trehalose, are impermeant to mammalian cell membranes and cannot be utilized effectively using currently available compound-loading methods. We found that transient pore formation induced by ultrasound and microbubbles (sonoporation) offers an effective means of loading trehalose into RBCs to facilitate long-term storage in a frozen or desiccated state.

View Article and Find Full Text PDF

Pediatric heart failure (HF) patients have been a historically underserved population for mechanical circulatory support (MCS) therapy. To address this clinical need, we are developing a low cost, universal magnetically levitated extracorporeal system with interchangeable pump heads for pediatric support. Two impeller and pump designs (pump V1 and V2) for the pediatric pump were developed using dimensional analysis techniques and classic pump theory based on defined performance criteria (generated flow, pressure, and impeller diameter).

View Article and Find Full Text PDF

Widespread transmission of a novel coronavirus, COVID-19, has caused major public health and economic problems around the world. Significant mitigation efforts have been implemented to reduce the spread of COVID-19 but the role of ambient noise and elevated vocal effort on airborne transmission have not been widely reported. Elevated vocal effort has been shown to increase emission of potentially infectious respiratory droplets, which can remain airborne for up to several hours.

View Article and Find Full Text PDF

Respiratory droplets emitted during speech can transmit oral bacteria and infectious viruses to others, including COVID-19. Loud speech can generate significantly higher numbers of potentially infectious respiratory droplets. This study assessed the effect of speech volume on respiratory emission of oral bacteria as an indicator of potential pathogen transmission risk.

View Article and Find Full Text PDF

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was classified as a pandemic by the World Health Organization and has caused over 550,000 deaths worldwide as of July 2020. Accurate and scalable point-of-care devices would increase screening, diagnosis, and monitoring of COVID-19 patients. Here, we demonstrate rapid label-free electrochemical detection of SARS-CoV-2 antibodies using a commercially available impedance sensing platform.

View Article and Find Full Text PDF

Systemic delivery of conventional chemotherapies can cause negative systemic toxicity, including reduced immunity and damage to organs such as the heart and kidneys-limiting the maximum dose that can be administered. Targeted therapies appear to address this problem by having a specific target while mitigating off-target effects. Biocompatible perfluorocarbon-based nanodroplet emulsions encapsulated by a phospholipid shell are in development for delivery of molecular compounds and hold promise as vehicles for targeted delivery of chemotherapeutics to tumors.

View Article and Find Full Text PDF

Preservation of erythrocytes in a desiccated state for storage at ambient temperature could simplify blood transfusions in austere environments, such as rural clinics, far-forward military operations, and during space travel. Currently, storage of erythrocytes is limited by a short shelf-life of 42 days at 4 °C, and long-term preservation requires a complex process that involves the addition and removal of glycerol from erythrocytes before and after storage at -80 °C, respectively. Natural compounds, such as trehalose, can protect cells in a desiccated state if they are present at sufficient levels inside the cell, but mammalian cell membranes lack transporters for this compound.

View Article and Find Full Text PDF

MicroRNAs (miRs) are dysregulated in pathological left ventricular hypertrophy. AntimiR inhibition of miR-23a suppressed hypertension-induced cardiac hypertrophy in preclinical models, but clinical translation is limited by a lack of cardiac-targeted delivery systems. Ultrasound-targeted microbubble cavitation (UTMC) utilizes microbubbles as nucleic acid carriers to target delivery of molecular therapeutics to the heart.

View Article and Find Full Text PDF

Ultrasound-induced microbubble destruction can enhance drug delivery to cells. The molecular weight of therapeutic compounds varies significantly (from <1 kDa for small molecule drugs, to 7-15 kDa for siRNAs/miRNAs, to >1000 kDa for DNA plasmids). Therefore, the objective of this study was to determine the relationship between uptake efficiency and molecular weight using equal molar concentrations.

View Article and Find Full Text PDF

RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site.

View Article and Find Full Text PDF

The ability of low boiling point liquid perfluorocarbons (PFCs) to undergo a phase change from a liquid to a gas upon ultrasound irradiation makes PFC-based emulsions promising vehicles for triggered delivery of payloads. However, loading hydrophilic agents into PFC-based emulsions is difficult due to their insolubility in PFC. Here, we address this challenge by taking advantage of microfluidic technologies to fabricate double emulsions consisting of large aqueous cores and a perfluorohexane (PFH) shell, thus yielding high loading capacities for hydrophilic agents.

View Article and Find Full Text PDF

The acoustic attenuation spectrum of lipid-coated microbubble suspensions was measured in order to characterize the linear acoustic behavior of ultrasound contrast agents. For that purpose, microbubbles samples were generated with a very narrow size distribution by using microfluidics techniques. A performance as good as optical characterization techniques of single microbubbles was achieved using this method.

View Article and Find Full Text PDF

Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required.

View Article and Find Full Text PDF

Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation.

View Article and Find Full Text PDF

Application of high-intensity focused ultrasound to drug-loaded superhydrophobic meshes affords triggered drug release by displacing an entrapped air layer. The air layer within the superhydrophobic meshes is characterized using direct visualization and B-mode imaging. Drug-loaded superhydrophobic meshes are cytotoxic in an in vitro assay after ultrasound treatment.

View Article and Find Full Text PDF

Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is being explored as a non-invasive technology to treat solid tumors. However, the clinical use of HIFU for tumor ablation applications is currently limited by the long treatment times required. Phase-shift nanoemulsions (PSNE), consisting of liquid perfluorocarbon droplets that can be vaporized into microbubbles, are being developed to accelerate HIFU-mediated heating.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: