JACC Basic Transl Sci
November 2024
Heritable forms of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) represent starkly diverging clinical phenotypes, yet may be caused by mutations to the same sarcomeric protein. The precise mechanisms by which point mutations within the same gene bring about phenotypic diversity remain unclear. Our objective was to develop a mechanistic explanation of diverging phenotypes in two TPM1 mutations, E62Q (HCM) and E54K (DCM).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2024
Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging.
View Article and Find Full Text PDFAtrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2024
The co-chaperone Bcl2-associated athanogene 3 (BAG3) is a central node in protein quality control in the heart. In humans and animal models, decreased BAG3 expression is associated with cardiac dysfunction and dilated cardiomyopathy. Although previous studies focused on BAG3 in cardiomyocytes, cardiac fibroblasts are also critical drivers of pathologic remodeling.
View Article and Find Full Text PDFBackground: Mutations to the co-chaperone protein BAG3 (B-cell lymphoma-2-associated athanogene-3) are a leading cause of dilated cardiomyopathy (DCM). These mutations often impact the C-terminal BAG domain (residues 420-499), which regulates heat shock protein 70-dependent protein turnover via autophagy. While mutations in other regions are less common, previous studies in patients with DCM found that co-occurrence of 2 variants (P63A, P380S) led to worse prognosis.
View Article and Find Full Text PDFMutations in atrial-enriched genes can cause a primary atrial myopathy that can contribute to overall cardiovascular dysfunction. encodes myosin-binding protein H-like (MyBP-HL), an atrial sarcomere protein that shares domain homology with the carboxy-terminus of cardiac myosin-binding protein-C (cMyBP-C). The function of MyBP-HL and the relationship between MyBP-HL and cMyBP-C is unknown.
View Article and Find Full Text PDFAims: Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance. Treatment of AFib involves restoration of the atrial electrical rhythm. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs that involves decreased blood flow velocity and reduced atrial contractility.
View Article and Find Full Text PDFObjectives: The conversion of protein arginine residues to citrulline by calcium-dependent peptidyl arginine deiminases (PADs) has been implicated in the pathogenesis of several diseases, indicating that PADs are therapeutic targets. A recent study indicated that PAD4 regulates age-related organ fibrosis and dysfunction; however, the specific role of this PAD and its citrullination substrate remains unclear. We investigated whether pharmacological inhibition of PAD activity could affect the progression of fibrosis and restore heart function.
View Article and Find Full Text PDFB-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.
View Article and Find Full Text PDFTissue Eng Part C Methods
October 2023
Decellularized porcine myocardium is commonly used as scaffolding for engineered heart tissues (EHTs). However, structural and mechanical heterogeneity in the myocardium complicate production of mechanically consistent tissues. In this study, we evaluate the porcine psoas major muscle (tenderloin) as an alternative scaffold material.
View Article and Find Full Text PDFStructural and functional studies of heart muscle are important to gain insights into the physiological bases of cardiac muscle contraction and the pathological bases of heart disease. While fresh muscle tissue works best for these kinds of studies, this is not always practical to obtain, especially for heart tissue from large animal models and humans. Conversely, tissue banks of frozen human hearts are available and could be a tremendous resource for translational research.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2023
Am J Physiol Heart Circ Physiol
January 2023
We recently established a large animal model that recapitulates key clinical features of heart failure with preserved ejection fraction (HFpEF) and tested the effects of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). SAHA reversed and prevented the development of cardiopulmonary impairment. This study evaluated the effects of SAHA at the level of cardiomyocyte and contractile protein function to understand how it modulates cardiac function.
View Article and Find Full Text PDFBackground: Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3β (glycogen synthase kinase 3β) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3β's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2021
Diabetes doubles the risk of developing heart failure (HF). As the prevalence of diabetes grows, so will HF unless the mechanisms connecting these diseases can be identified. Methylglyoxal (MG) is a glycolysis by-product that forms irreversible modifications on lysine and arginine, called glycation.
View Article and Find Full Text PDFThe co-chaperone Bcl2-associated athanogene-3 (BAG3) maintains cellular protein quality control through the regulation of heat shock protein 70 (HSP70). Cancer cells manipulate BAG3-HSP70-regulated pathways for tumor initiation and proliferation, which has led to the development of promising small molecule therapies, such as JG-98, which inhibit the BAG3-HSP70 interaction and mitigate tumor growth. However, it is not known how these broad therapies impact cardiomyocytes, where the BAG3-HSP70 complex is a key regulator of protein turnover and contractility.
View Article and Find Full Text PDF