Publications by authors named "Jonathan A G Mackinnon"

Nuclear receptors (NRs) are key players in the regulation of gene expression, coordinating protein assemblies upon their surfaces. NRs are regulated by ligand binding, which remodels the interaction surfaces and subsequently influences macromolecular complex formation. Structural biology has been instrumental in the discovery of some of these ligands, but there are still orphan NRs (ONRs) whose bona fide ligands have yet to be identified.

View Article and Find Full Text PDF

The traditional structural view of allostery defines this key regulatory mechanism as the ability of one conformational event (allosteric site) to initiate another in a separate location (active site). In recent years computational simulations conducted to understand how this phenomenon occurs in nuclear receptors (NRs) has gained significant traction. These results have yield insights into allosteric changes and communication mechanisms that underpin ligand binding, coactivator binding site formation, post-translational modifications, and oncogenic mutations.

View Article and Find Full Text PDF

The Ca(2+)- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133.

View Article and Find Full Text PDF