Organoids are emerging as a powerful tool to investigate complex biological structures . Vascularization of organoids is crucial to recapitulate the morphology and function of the represented human organ, especially in the case of the kidney, whose primary function of blood filtration is closely associated with blood circulation. Current microfluidic approaches have only provided initial vascularization of kidney organoids, whereas transplantation to animal models is problematic due to ethical problems, with the exception of xenotransplantation onto a chicken chorioallantoic membrane (CAM).
View Article and Find Full Text PDFFoams are unstable jammed materials. They evolve over timescales comparable to their "time of use", which makes the study of their destabilisation mechanisms crucial for applications. In practice, many foams are made from viscoelastic fluids, which are observed to prolong their lifetimes.
View Article and Find Full Text PDFUnderstanding of the viscoelastic behavior of a polymer is a prerequisite for its thermomechanical processing beyond laboratory scale. Utilizing rheological characterization is a powerful tool to comprehend the complex nature and time-dependent properties of macromolecular materials. Nevertheless, it consumes time as rheometry involves iterating experiments under several conditions to visualize the non-linear behavior of materials under varying conditions.
View Article and Find Full Text PDFMimicking natural structures allows the exploitation of proven design concepts for advanced material solutions. Here, our inspiration comes from the anisotropic closed cell structure of wood. The bubbles in our fiber reinforced foam are elongated using temperature dependent viscosity of methylcellulose and constricted drying.
View Article and Find Full Text PDFIn rheological terms, foams are time independent yield stress fluids, displaying properties of both solid and liquid materials. Here we measure the propagation of a 2D dry foam in a radially symmetric Hele-Shaw cell forcing local yielding. The yield rate is manipulated by mechanical vibration with frequencies from 0 to 150 Hz.
View Article and Find Full Text PDF