Publications by authors named "Jonatan Dorca-Arevalo"

Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.

View Article and Find Full Text PDF

The epsilon toxin (Etx) from Clostridium perfringens has been identified as a potential trigger of multiple sclerosis, functioning as a pore-forming toxin that selectively targets cells expressing the plasma membrane (PM) myelin and lymphocyte protein (MAL). Previously, we observed that Etx induces the release of intracellular ATP in sensitive cell lines. Here, we aimed to re-examine the mechanism of action of the toxin and investigate the connection between pore formation and ATP release.

View Article and Find Full Text PDF

Extracellular adenosine triphosphate (ATP) conducts a complex dynamic system of broadly represented cell signaling. Ectonucleotidases are the enzymes with nucleotide hydrolytic ability that regulate ATP levels in physiological and pathological conditions, thus playing a key role in the so-called purinergic signaling. Altered ectonucleotidase expression has been reported in cancer, and the ectonucleoside triphosphate diphosphohydrolase (NTPDase) family of enzymes, with its best-known form NTPDase1 (CD39), is targeted in cancer immunotherapy.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the absence of a functional copy of the Survival of Motor Neuron 1 gene (SMN1). The nearly identical paralog, SMN2, cannot compensate for the loss of SMN1 because exon 7 is aberrantly skipped from most SMN2 transcripts, a process mediated by synergistic activities of Src-associated during mitosis, 68 kDa (Sam68/KHDRBS1) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1. This results in the production of a truncated, nonfunctional protein that is rapidly degraded.

View Article and Find Full Text PDF

Epsilon toxin (Etx) from is the third most potent toxin after the botulinum and tetanus toxins. Etx is the main agent of enterotoxemia in ruminants and is produced by toxinotypes B and D, causing great economic losses. Etx selectively binds to target cells, oligomerizes and inserts into the plasma membrane, and forms pores.

View Article and Find Full Text PDF

The pore-forming protein epsilon toxin (Etx) from Clostridium perfringens produces acute perivascular edema affecting several organs, especially the brain and lungs. Despite the toxin evident effect on microvasculature and endothelial cells, the underlying molecular and cellular mechanisms remain obscure. Moreover, no Etx-sensitive endothelial cell model has been identified to date.

View Article and Find Full Text PDF

Epsilon toxin (Etx) from is a pore-forming protein that crosses the blood-brain barrier, binds to myelin, and, hence, has been suggested to be a putative agent for the onset of multiple sclerosis, a demyelinating neuroinflammatory disease. Recently, myelin and lymphocyte (MAL) protein has been identified to be a key protein in the cytotoxic effect of Etx; however, the association of Etx with the immune system remains a central question. Here, we show that Etx selectively recognizes and kills only human cell lines expressing MAL protein through a direct Etx-MAL protein interaction.

View Article and Find Full Text PDF

Epsilon toxin (Etx) is produced by Clostridium perfringens and induces enterotoxemia in ruminants. Etx crosses the blood-brain barrier, binds to myelin structures, and kills oligodendrocytes, inducing central nervous system demyelination. In addition, Etx has a cytotoxic effect on distal and collecting kidney tubules.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common cause of dementia nowadays, has been linked to alterations in the septohippocampal pathway (SHP), among other circuits in the brain. In fact, the GABAergic component of the SHP, which controls hippocampal rhythmic activity crucial for learning and memory, is altered in the J20 mouse model of AD-a model that mimics the amyloid pathology of this disease. However, AD is characterized by another pathophysiological hallmark: the hyperphosphorylation and aggregation of the microtubule-associated protein Tau.

View Article and Find Full Text PDF

Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors.

View Article and Find Full Text PDF

Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells.

View Article and Find Full Text PDF

Hereditary spastic paraplegias are a group of inherited motor neuron diseases characterized by progressive paraparesis and spasticity. Mutations in the spastic paraplegia gene SPG11, encoding spatacsin, cause an autosomal-recessive disease trait; however, the precise knowledge about the role of spatacsin in neurons is very limited. We for the first time analyzed the expression and function of spatacsin in human forebrain neurons derived from human pluripotent stem cells including lines from two SPG11 patients and two controls.

View Article and Find Full Text PDF

Epsilon toxin (ε-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. In the renal system, the toxin binds to target cells before oligomerization, pore formation and cell death. Still, there is little information about the cellular and molecular mechanism involved in the initial steps of the cytotoxic action of ε-toxin, including the specific binding to the target sensitive cells.

View Article and Find Full Text PDF

Epsilon-toxin (epsilon-toxin), produced by Clostridium perfringens type D, is the main agent responsible for enterotoxaemia in livestock. Neurological disorders are a characteristic of the onset of toxin poisoning. Epsilon-Toxin accumulates specifically in the central nervous system, where it produces a glutamatergic-mediated excitotoxic effect.

View Article and Find Full Text PDF