Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths.
View Article and Find Full Text PDFThe standard expressions for the noise that is due to photon fluctuations in thermal background radiation typically apply only for a single detector and are often strictly valid only for single-mode illumination. I describe a technique for rigorously calculating thermal photon noise, which allows for arbitrary numbers of optical inputs and detectors, multiple-mode illumination, and both internal and external noise sources. Several simple examples are given, and a general result is obtained for multimode detectors.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2003
Multiple-telescope interferometry for high-angular-resolution astronomical imaging in the optical-IR-far-IR bands is currently a topic of great scientific interest. The fundamentals that govern the sensitivity of direct-detection instruments and interferometers are reviewed, and the rigorous sensitivity limits imposed by the Cramér-Rao theorem are discussed. Numerical calculations of the Cramér-Rao limit are carried out for a simple example, and the results are used to support the argument that interferometers that have more compact instantaneous beam patterns are more sensitive, since they extract more spatial information from each detected photon.
View Article and Find Full Text PDF