Publications by authors named "Jonas Wiebke"

Background: In the Western world, there has been a notable rise in the popularity of plant-based, meat-reduced flexitarian diets. Nevertheless, there is insufficient data on the nutritional status of individuals following this dietary pattern. The aim of this study was to investigate the intake and endogenous status of various nutrients in a healthy German adult study population consisting of flexitarians (FXs), vegans (Vs) and omnivores (OMNs).

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD levels are a shared characteristic of various diseases and aging per se, several NAD -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD homeostasis through metabolic adaption to chronically recurring states of increased energy demand.

View Article and Find Full Text PDF

The melting of argon clusters ArN is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.

View Article and Find Full Text PDF

The Joule-Thomson coefficient μ(H)(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K.

View Article and Find Full Text PDF

Second, third, and fourth thermal and acoustic virial coefficients between 100 and 1000 K are computed for different argon interaction models derived from combinations of accurate two- and three-body potentials. Differences between the various interaction models tested mirror the presumed order in the accuracy of these models, but are not well captured at the level of the lowest-order contributions in the virial expansion: While the second- and third-order virial coefficients are found to be rather insensitive to small variations in the two- and three-body potentials, more pronounced differences in higher-order coefficients are currently of limited use in assessing the accuracy of the interaction potential due to difficulties in the unambiguous experimental determination of these higher-order coefficients. In contrast, pressure-volume and speed-of-sound data--both of which are experimentally known to highest accuracies--are found to be insensitive to small variations in the interaction model.

View Article and Find Full Text PDF

A simple and efficient internal-coordinate importance sampling protocol for the Monte Carlo computation of (up to fourth-order) virial coefficients ̅B(n) of atomic systems is proposed. The key feature is a multivariate sampling distribution that mimics the product structure of the dominating pairwise-additive parts of the ̅B(n). This scheme is shown to be competitive over routine numerical methods and, as a proof of principle, applied to neon: The second, third, and fourth virial coefficients of neon as well as equation-of-state data are computed from ab initio two- and three-body potentials; four-body contributions are found to be insignificant.

View Article and Find Full Text PDF

Lanthanide(iii) hydration was studied by utilizing density-functional theory and second-order Møller-Plesset perturbation theory combined with scalar-relativistic 4f-in-core pseudopotentials and valence-only basis sets for the Ln(iii) ions. For [Ln(iii)(H(2)O)(h)](3+) (h = 7, 8, 9) and [Ln(iii)(H(2)O)(h-1)·H(2)O](3+) (h = 8, 9) molecular structures, binding energies, entropies and energies of hydration as well as Gibbs free energies of hydration were calculated using (8s7p6d3f2g)/[6s5p5d3f2g] basis sets for Ln(iii) and aug-cc-pV(D,T)Z basis sets for O and H in combination with the COSMO solvation model. At the generalized gradient approximation level of density-functional theory a preferred hydration number of 8 is found for La(iii)-Tm(iii) and 7 for Yb(iii)-Lu(iii), whereas hybrid density-functional theory predicts a hydration number 8 for all Ln(iii).

View Article and Find Full Text PDF

The bis(salicylhydroxamato) and bis(benzohydroxamato) complexes of UO(2)(2+) in aqueous solution have been investigated in a combined experimental and computational effort using extended X-ray absorption fine structure and UV-vis spectroscopy and density functional theory (DFT) techniques, respectively. The experimentally unknown bis(benzoate) complex of UO(2)(2+) was investigated computationally for comparison. Experimental data indicate 5-fold UO(2)(2+) coordination with mean equatorial U-O distances of 2.

View Article and Find Full Text PDF

The complexes of uranium(VI) with salicylhydroxamate, benzohydroxamate, and benzoate have been investigated in a combined computational and experimental study using density functional theory methods and extended X-ray absorption fine structure spectroscopy, respectively. The calculated molecular structures, relative stabilities, as well as excitation spectra from time-dependent density functional theory calculations are in good agreement with experimental data. Furthermore, these calculations allow the identification of the coordinating atoms in the uranium(VI)-salicylhydroxamate complex, i.

View Article and Find Full Text PDF