Purpose: First, to investigate the agreement between velocity, velocity gradient, and Reynolds stress obtained from four-dimensional flow magnetic resonance (4D flow MRI) measurements and direct numerical simulation (DNS). Second, to propose and optimize based on DNS, 2 alternative methods for the accurate estimation of wall shear stress (WSS) when the resolution of the flow measurements is limited. Thirdly, to validate the 2 methods based on 4D flow MRI data.
View Article and Find Full Text PDFPurpose: To compare EPI and GRE readout in high-flow velocity regimes and evaluate their impact on measurement accuracy in silico and in vitro.
Theory And Methods: Phase-contrast sequences for EPI and GRE were simulated using CFD velocity data to assess displacement artifacts as well as effective spatial resolution. In silico findings were validated experimentally using a steady flow phantom.
Diseased heart valves perturb normal blood flow with a range of hemodynamic and pathologic consequences. In order to better stratify patients with heart valve disease, a comprehensive characterization of blood flow including turbulent contributions is desired. In this work we present a framework to efficiently quantify velocities and Reynolds stresses in the aorta in-vivo.
View Article and Find Full Text PDFBackground: Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting. We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times.
View Article and Find Full Text PDFPurpose: To investigate limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy (TKE).
Methods: To assess the validity of partial Fourier reconstruction of TKE and phase images, computational fluid dynamics data of mean and turbulent velocities in a stenotic U-bend phantom was used. Partial Fourier acquisition with 75% k-space coverage was simulated and TKE data were reconstructed using zero-filling, homodyne reconstruction, and the method of projections onto convex sets (POCS).