Publications by authors named "Jonas Stalhand"

To design complex wearable haptic interfaces using pressure, we have to explore how we can use pressure stimuli to their full potential. Haptic illusions, such as apparent motion and apparent location, can be a part of this. If these illusions can be evoked with pressure, haptic patterns can increase in complexity without increasing the number of actuators or combining different types of actuators.

View Article and Find Full Text PDF
Article Synopsis
  • Wall stress in the abdominal aorta (AA) is linked to the risk of rupture, influenced by factors like blood pressure and aortic size.
  • In a study involving 30 healthy adults, researchers found that elderly males exhibited higher total wall stress and specific stress components compared to elderly females.
  • The findings suggest that age and sex affect the isotropic and anisotropic properties of the aortic wall, potentially due to hormonal influences and fiber distribution changes over time.
View Article and Find Full Text PDF

In this paper an existing in vivo parameter identification method for arteries is extended to account for smooth muscle activity. Within this method a continuum-mechanical model, whose parameters relate to the mechanical properties of the artery, is fit to clinical data by solving a minimization problem. Including smooth muscle activity in the model increases the number of parameters.

View Article and Find Full Text PDF

A method for identifying mechanical properties of arterial tissue in vivo is proposed in this paper and it is numerically validated for the human abdominal aorta. Supplied with pressure-radius data, the method determines six parameters representing relevant mechanical properties of an artery. In order to validate the method, 22 finite element arteries are created using published data for the human abdominal aorta.

View Article and Find Full Text PDF

A need exists for artificial muscles that are silent, soft, and compliant, with performance characteristics similar to those of skeletal muscle, enabling natural interaction of assistive devices with humans. By combining one of humankind's oldest technologies, textile processing, with electroactive polymers, we demonstrate here the feasibility of wearable, soft artificial muscles made by weaving and knitting, with tunable force and strain. These textile actuators were produced from cellulose yarns assembled into fabrics and coated with conducting polymers using a metal-free deposition.

View Article and Find Full Text PDF

Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths.

View Article and Find Full Text PDF

There are limited experimental data to characterize the mechanical response of human myometrium. A method is presented in this work to identify mechanical parameters describing the active response of human myometrium from the in vivo intrauterine pressure measurements. The human uterine contraction during labor is simulated by implementing a coupled model in a finite element scheme, and the intrauterine pressure is evaluated as the outcome.

View Article and Find Full Text PDF

Contractions of uterine smooth muscle cells consist of a chain of physiological processes. These contractions provide the required force to expel the fetus from the uterus. The inclusion of these physiological processes is, therefore, imperative when studying uterine contractions.

View Article and Find Full Text PDF

The main focus in most of the continuum based muscle models is the mechanics of muscle contraction while other physiological processes governing muscle contraction, e.g., cell membrane excitation and activation, are ignored.

View Article and Find Full Text PDF

The contractile force in skeletal muscle models is commonly postulated to be the isometric force multiplied by a set of experimentally motivated functions which account for the muscle's active properties. Although both flexible and simple, this approach does not automatically guarantee a thermodynamically consistent behavior. In contrast, the continuum mechanical model proposed herein is derived from fundamental principles in mechanics and guarantees a dissipative behavior.

View Article and Find Full Text PDF

A method for estimation of central arterial pressure based on linear one-dimensional wave propagation theory is presented in this paper. The equations are applied to a distributed model of the arterial tree, truncated by three-element windkessels. To reflect individual differences in the properties of the arterial trees, we pose a minimization problem from which individual parameters are identified.

View Article and Find Full Text PDF

This study suggests a method to compute the material parameters for arteries in vivo from clinically registered pressure-radius signals. The artery is modelled as a hyperelastic, incompressible, thin-walled cylinder and the membrane stresses are computed using a strain energy. The material parameters are determined in a minimisation process by tuning the membrane stress to the stress obtained by enforcing global equilibrium.

View Article and Find Full Text PDF