Anthropogenic sources of antimony (Sb) are an important driver of pollution in the Earth environment, but their roles in the historical changes of Sb pollution in lake ecosystems are currently poorly understood. This study documents the sedimentary Sb deposition fluxes in Hongfeng lake (HFL), in southwestern China during 1958-2021 and quantifies the changes of anthropogenic contributions to sediments using Sb stable isotopes. Mean Sb concentration (mean: 1.
View Article and Find Full Text PDFMercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (Hg) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past ∼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of Hg compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research.
View Article and Find Full Text PDFThe re-emission and subsurface migration of legacy mercury (Hg) are not well understood due to limited knowledge of the driving processes. To investigate these processes at a decommissioned chlor-alkali plant, we used mercury stable isotopes and chemical speciation analysis. The isotopic composition of volatilized Hg(0) was lighter compared to the bulk total Hg (THg) pool in salt-sludge and adjacent surface soil with mean εHg values of -3.
View Article and Find Full Text PDFIn this study, exchange fluxes and Hg isotope fractionation during water-atmosphere Hg(0) exchange were investigated at three lakes in China. Water-atmosphere exchange was overall characterized by net Hg(0) emissions, with lake-specific mean exchange fluxes ranging from 0.9 to 1.
View Article and Find Full Text PDFThe atmosphere is the primary medium for long-distance transport and transformation of elemental mercury (Hg), a potent neurotoxin. The recent discovery of mass-independent fractionation (MIF) of even-mass Hg isotopes (even-MIF, measured as ΔHg and ΔHg) in the atmosphere is surprising and can potentially serve as a powerful tracer in understanding Hg biogeochemistry. Far-ultraviolet (UVC) light-induced gas-phase reactions have been suspected as a likely cause for even-MIF, yet the mechanism remains unknown.
View Article and Find Full Text PDFVegetation uptake represents the dominant route of Hg input to terrestrial ecosystems. However, this plant-directed sink is poorly constrained due to the challenges in measuring the net Hg exchange on the ecosystem scale over a long period. Particularly important is the contribution in the subtropics/tropics, where the bulk (∼70%) of the Hg deposition is considered to occur.
View Article and Find Full Text PDFThis study examined the isotopic composition of particulate bound mercury (PBM) in 10 Chinese megacities and explored the associated sources and transformation mechanisms. PBM in these cities was characterized by negative δHg (mean: -2.00 to -0.
View Article and Find Full Text PDFAtmosphere-surface exchange of elemental mercury (Hg(0)) is a vital component in global Hg cycling; however, Hg isotope fractionation remains largely unknown. Here, we report Hg isotope fractionation during air-surface exchange from terrestrial surfaces at sites of background (two) and urban (two) character and at five sites contaminated by Hg mining. Atmospheric Hg(0) deposition to soils followed kinetic isotope fractionation with a mass-dependent (MDF) enrichment factor of -4.
View Article and Find Full Text PDFWe have investigated the chemistry and Hg isotope fractionation during the aqueous reduction of Hg by oxalic acid, -quinone, quinol, and anthraquinone-2,6-disulfonate (AQDS), a derivate of anthraquinone (AQ) that is found in secondary organic aerosols (SOA) and building blocks of natural organic matter (NOM). Each reaction was examined for the effects of light, pH, and dissolved O. Using an excess of ligand, UVB photolysis of Hg was seen to follow pseudo-first-order kinetics, with the highest rate of ∼10 s observed for AQDS and oxalic acid.
View Article and Find Full Text PDFAir-soil exchange of elemental mercury vapor (Hg) is an important component in the budget of the global mercury cycle. However, its mechanistic detail is poorly understood. In this study, stable Hg isotopes in air, soil, and pore gases are characterized in a subtropical evergreen forest to understand the mechanical features of the air-soil Hg exchange.
View Article and Find Full Text PDFAntimony (Sb), a priority pollutant listed by the U.S. Environmental Protection Agency (USEPA), can cause adverse effects on human health, with particular impacts on skin, eyes, gastrointestinal tract, and respiratory system.
View Article and Find Full Text PDFThe focus of this paper is to briefly discuss the major advances in scientific thinking regarding: a) processes governing the fate and transport of mercury in the environment; b) advances in measurement methods; and c) how these advances in knowledge fit in within the context of the Minamata Convention on Mercury. Details regarding the information summarized here can be found in the papers associated with this Virtual Special Issue of STOTEN.
View Article and Find Full Text PDFOrganic soil is an important transient reservoir of mercury (Hg) in terrestrial ecosystems, but the fate of deposited Hg in organic forest soil is poorly understood. To understand the dynamic changes of deposited Hg on forest floor, the composition of stable Hg and carbon (C) isotopes in decomposing litters and organic soil layer was measured to construct the 500 year history of postdepositional Hg transformation in a subtropical evergreen broad-leaf forest in Southwest China. Using the observational data and a multiprocess isotope model, the contributions of microbial reduction, photoreduction, and dark reduction mediated by organic matter to the isotopic transition were estimated.
View Article and Find Full Text PDFThe atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle.
View Article and Find Full Text PDFIn mercury (Hg) contaminated areas of Asia, human exposure to toxic methyl-Hg (MeHg) through a rice-based diet of locally produced crop may pose a health threat. Alternative cropping system to rice in such areas would be most desirable. In this study, corn, the leading cereal source in the world with large biomass, was demonstrated to accumulate an insignificant amount of MeHg from the soil in its edible portion compared to that in rice, suggesting corn being a very competitive alternative crop.
View Article and Find Full Text PDFA novel passive exchange meter (EM) device was developed to assess air-surface exchange and leaching of Hg in a forest floor. Flux measurements were carried out in a subtropical forest ecosystem during a full year. Over 40% of the Hg fixed in fresh forest litter was remobilized in less than 60 days in warm and humid conditions as a response to rapid turnover of labile organic matter (OM).
View Article and Find Full Text PDFThe mechanism of elemental mercury (Hg) re-emission from vegetation to the atmosphere is currently poorly understood. In this study, we investigated branch-level Hg atmosphere-foliage exchange in a pristine evergreen forest by systematically combining Hg isotopic composition, air concentration and flux measurements to unravel process information. It is found that the foliage represents a diurnally changing sink for atmospheric Hg and its Hg content increases with leaf age and mass.
View Article and Find Full Text PDFMercury (Hg) emissions from point sources to air may disperse over long distance depending on Hg speciation in the plume. A significant fraction of Hg, particularly in its divalent forms, deposits locally and causes pollution to surrounding biomes. The objective of this study was to investigate (1) the historic Hg deposition to the immediate vicinity of an industrial complex that had intentional use of Hg (i.
View Article and Find Full Text PDFEnviron Pollut
September 2018
A novel mobile laser radar system was used for mapping gaseous atomic mercury (Hg) atmospheric pollution in the Wanshan district, south of Tongren City, Guizhou Province, China. This area is heavily impacted by legacy mercury from now abandoned mining activities. Differential absorption lidar measurements were supplemented by localized point monitoring using a Lumex RA-915M Zeeman modulation mercury analyzer.
View Article and Find Full Text PDFMercury accumulation in montane forested areas plays an important role in global Hg cycling. In this study, we measured stable Hg isotopes in soil and litter samples to understand Hg accumulation on the forest floor along the eastern fringe of the Tibetan Plateau (TP). The low atmospheric Hg inputs lead to the small Hg pool size (23 ± 9 mg m in 0-60 cm soil horizon), up to 1 order of magnitude lower than those found at sites in Southwest China, North America, and Europe.
View Article and Find Full Text PDFThis study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.
View Article and Find Full Text PDFThe isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg.
View Article and Find Full Text PDFThe influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China.
View Article and Find Full Text PDFEnviron Sci Technol
August 2012
Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions.
View Article and Find Full Text PDFDue to the fast developing economy, mercury (Hg) emissions to the atmosphere from Chinese mainland have increased rapidly in recent years. Consequently, this issue has received a considerable attention internationally. This paper reviews the current understanding of and knowledge on atmospheric Hg emissions, distribution and transport in China.
View Article and Find Full Text PDF