Publications by authors named "Jonas P de Souza Junior"

Background: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function.

View Article and Find Full Text PDF

Studies of boron (B) and silicon (Si) synergy in cotton crops have shown promising results; however, the focus was on the foliar application of B and Si. Nonetheless, B is an element with little mobility in the plant and its best form of application is in the soil. Thus, the objective of this study was to evaluate the synergistic effect of soil applied B and foliar applied sSi on fiber quality and crop yield of cotton.

View Article and Find Full Text PDF

Potassium (K) deficiency in maize plants damages the nutritional functions of K. However, few studies have investigated the influence of K on C:N:P stoichiometry, the nutritional efficiency of these nutrients, and whether the mitigating effect of Si in plants under stress could act on these nutritional mechanisms involved with C, N, and P to mitigate K deficiency. Therefore, this study aimed to evaluate the impact of K deficiency in the absence and presence of Si on N and P uptake, C:N:P stoichiometric homeostasis, nutritional efficiency, photosynthetic rate, and dry matter production of maize plants.

View Article and Find Full Text PDF

Silicon (Si) may be involved in the modification of C:N:P stoichiometry and in physiological processes, increasing sorghum growth and grain production. The objective was to evaluate the effect of Si supply on C:N:P:Si stoichiometry, physiological response, growth, and grain production of sorghum. The experiment was carried out in pots with four concentrations of Si: 0; 1.

View Article and Find Full Text PDF

Background: Boron (B) and silicon (Si) are fundamental for brassica nutrition, and in some cases, they have potential as an insecticide. Plutella xylostella (L.) (Lepidoptera: Plutellidae), one of the most economically important agricultural pests, is difficult to control due to the resistance to insecticides and the absence of alternative control methods.

View Article and Find Full Text PDF

Studies with silicon (Si) in sugarcane indicate a greater response in productivity in plants under stress, and the underlying mechanisms of Si in the crop are poorly reported. In this context, the benefits of Si in the crop's stem production are expected to occur at the C:N:P stoichiometry level in plant tissues, benefiting plants with and without stress. However, the extension of this response may vary in different soils.

View Article and Find Full Text PDF

Background: Boron (B) nutritional disorders, either deficiency or toxicity, may lead to an increase in reactive oxygen species production, causing damage to cells. Oxidative damage in leaves can be attenuated by supplying silicon (Si). The aim of this study was to assess the effect of increasing foliar B accumulation on cotton plants to determine whether adding Si to the spray solution promotes gains to correct deficiency and toxicity of this micronutrient by decreasing oxidative stress via synthetizing proline and glycine-betaine, thereby raising dry matter production.

View Article and Find Full Text PDF

Potassium (K) deficiency affects physiological performance and decreases vegetative growth in common bean plants. Although silicon (Si) supplied via nutrient solution or foliar application may alleviate nutritional stress, research on the bean crop is incipient. Thus, two experiments were carried out: initially, a test was performed to determine the best source and foliar concentration of silicon.

View Article and Find Full Text PDF
Article Synopsis
  • Nutritional deficiencies in quinoa crops, particularly in nitrogen, phosphorus, potassium, calcium, and magnesium, negatively impact plant health and growth, leading to characteristic visual symptoms and reduced dry mass.
  • The study investigates the role of silicon (Si) in alleviating these deficiencies, using a factorial experiment design that compares the effects of nutrient absence with and without Si supplementation.
  • Results indicate that Si helps maintain the plant's photosynthetic function and chlorophyll production, enhances membrane integrity, and reduces electrolyte leakage, particularly mitigating the impacts of nitrogen and calcium deficiencies and promoting higher dry mass production.
View Article and Find Full Text PDF

Nitrogen deficiency and toxicity, primarily in its ammonium form (NH4+), can suppress plant growth and development. The use of silicon (Si) or salicylic acid (SA) may be an alternative to minimize the harmful effects of nutrient imbalances caused by NH4+, thereby improving the photosynthetic efficiency of plants. The aim of the present study was to assess the action of fertigation-applied Si and SA foliar spraying in mitigating NH4+ toxicity and deficiency in eucalyptus clonal seedlings.

View Article and Find Full Text PDF

Silicon (Si) application has improved yield and stress tolerance in sugarcane crops. In this respect, C:N:P stoichiometry makes it possible to identify flows and interaction between elements in plants and their relationship with growth. However, few studies have investigated the influence of Si on physiological variables and C:N:P stoichiometry in sugarcane.

View Article and Find Full Text PDF