Publications by authors named "Jonas Ogien"

The image contrast and probing depth of optical methods applied to in vivo skin could be improved by reducing skin scattering using the optical clearing method. The aim of this study was to quantify, from line-field confocal optical coherence tomography (LC-OCT) 3D images, the modifications of skin scattering properties in vivo during optical clearing. Nine mixtures of optical clearing agents were used in combination with physical and chemical permeation enhancers on the human skin of three healthy volunteers.

View Article and Find Full Text PDF

This article introduces an innovative line-field confocal optical coherence tomography (LC-OCT) system based on tandem interferometry, featuring a focus-tunable lens for dynamic focusing. The principle of tandem interferometry is first recalled, and an analytical expression of the interferometric signal detected is established in order to identify the influence of key experimental parameters. The LC-OCT system is based on a Linnik-type imaging interferometer with a focus-tunable lens for focus scanning, coupled to a Michelson-type compensating interferometer using a piezoelectric linear translation stage for coherence plane scanning.

View Article and Find Full Text PDF

Background: In tissue engineering, real-time monitoring of tumors and of the dynamics of the microenvironment within in vitro models has traditionally been hindered by the need to harvest the cultures to obtain material to analyze. Line-field confocal optical coherence tomography (LC-OCT) has proven to be useful in evaluating in vivo skin conditions, including melanoma, by capturing dynamic, three-dimensional (3D) information without the need for invasive procedures, such as biopsies. Additionally, the M-Duo Technology® developed by IMcoMET presents a unique opportunity for continuous in situ biomarker sampling, providing insights into local cellular behavior and interactions.

View Article and Find Full Text PDF

Line-field confocal optical coherence tomography (LC-OCT) is a non-invasive optical imaging technique based on a combination of the principles of optical coherence tomography and reflectance confocal microscopy with line-field illumination, which can generate cell-resolved images of the skin in vivo. This article reports on the LC-OCT technique and its application in dermatology. The principle of the technique is described, and the latest technological innovations are presented.

View Article and Find Full Text PDF

Line-field confocal optical coherence tomography (LC-OCT) is a non-invasive optical imaging technique based on a combination of the optical principles of optical coherence tomography and reflectance confocal microscopy with line-field illumination, which can generate cell-resolved images of the skin, in vivo, in vertical section, horizontal section and in three dimensions. This article reviews the optical principles of LC-OCT, including low coherence interferometry, confocal filtering and line-field arrangement. The optical setup allowing for the acquisition of color images of the skin surface in parallel with LC-OCT images, without compromising LC-OCT performance, is also presented.

View Article and Find Full Text PDF

Significance: Line-field confocal optical coherence tomography (LC-OCT) is a recently introduced high-resolution imaging modality based on a combination of low-coherence optical interferometry and reflectance confocal optical microscopy with line illumination and line detection. Capable of producing three-dimensional (3D) images of the skin with cellular resolution, in vivo, LC-OCT has been mainly applied in dermatology and dermo-cosmetology. The LC-OCT devices capable of acquiring 3D images reported so far are based on a Linnik interferometer using two identical microscope objectives.

View Article and Find Full Text PDF

Line-field confocal optical coherence tomography (LC-OCT) is an optical modality that provides three-dimensional (3D) images of the skin at cellular resolution. Confocal Raman microspectroscopy (CRM) is a label-free optical technique that can provide point measurement of the molecular content of the skin. This work presents a method to co-localize LC-OCT and CRM acquisitions for morpho-molecular analysis of skin tissues at cellular level.

View Article and Find Full Text PDF

This paper reports on the latest advances in line-field confocal optical coherence tomography (LC-OCT), a recently invented imaging technology that now allows the generation of either horizontal (x × y) section images at an adjustable depth or vertical (x × z) section images at an adjustable lateral position, as well as three-dimensional images. For both two-dimensional imaging modes, images are acquired in real-time, with real-time control of the depth and lateral positions. Three-dimensional (x × y × z) images are acquired from a stack of horizontal section images.

View Article and Find Full Text PDF

Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique in which A-scans are acquired in parallel through line illumination with a broadband laser and line detection with a line-scan camera. B-scan imaging at high spatial resolution is achieved by dynamic focusing in a Linnik interferometer. This paper presents an LC-OCT device based on a custom-designed Mirau interferometer that offers similar spatial resolution and detection sensitivity.

View Article and Find Full Text PDF

Line-field confocal optical coherence tomography (LC-OCT) is a recently introduced technique for ultrahigh-resolution vertical section (B-scan) imaging of human skin . This work presents a new implementation of the LC-OCT technique to obtain horizontal section images (C-scans) in addition to B-scans. C-scan imaging is achieved with this dual-mode LC-OCT system using a mirror galvanometer for lateral scanning along with a piezoelectric chip for modulation of the interferometric signal.

View Article and Find Full Text PDF

A time-domain optical coherence tomography technique is introduced for high-resolution B-scan imaging in real-time. The technique is based on a two-beam interference microscope with line illumination and line detection using a broadband spatially coherent light source and a line-scan camera. Multiple (2048) A-scans are acquired in parallel by scanning the sample depth while adjusting the focus.

View Article and Find Full Text PDF

A compact high-speed full-field optical coherence microscope has been developed for high-resolution in vivo imaging of biological tissues. The interferometer, in the Linnik configuration, has a size of 11 × 11 × 5 cm and a weight of 210 g. Full-field illumination with low-coherence light is achieved with a high-brightness broadband light-emitting diode.

View Article and Find Full Text PDF

High-resolution full-field optical coherence microscopy (FF-OCM) is demonstrated using a single broadband light-emitting diode (LED). The characteristics of the LED-illumination FF-OCM system are measured and compared to those obtained using a halogen lamp, the light source of reference in FF-OCM. Both light sources yield identical performance in terms of spatial resolution and detection sensitivity, using the same setup and camera.

View Article and Find Full Text PDF

An original single-objective, full-field optical coherence microscopy system is reported that is capable of imaging both the phase and the amplitude of semi-transparent samples over a field of view of 17.5  mm×17.5  mm with an axial sectioning resolution of 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvr9asfj2euim75octvjpjvrd8st01a2t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once