In Batesian mimicry, mimetic traits are not always as convincing as predicted by theory-in fact, inaccurate mimicry with only a superficial model resemblance is common and taxonomically widespread. The "selection trade-offs hypothesis" proposes a life-history trade-off between accurate mimetic traits and one or more vital biological functions. Here, using an accurate myrmecomorphic (ant-mimicking) jumping spider species, Myrmarachne smaragdina, we investigate how myrmecomorphic modifications to the body shape impact the internal anatomy in a way that could be functionally limiting.
View Article and Find Full Text PDFSpider silk is amongst the toughest materials produced by living systems, but its tensile performance varies considerably between species. Despite the extensive sampling of the material properties and composition of dragline silk, the understanding of why some silks performs better than others is still limited. Here, I adopted a phylogenetic comparative approach to reanalyze structural and mechanical data from the Silkome database and the literature across 164 species to (a) provide an extended model of silk property evolution, (b) test for correlations between structural and mechanical properties, and (c) to test if silk tensile performance differs between web-building and nonweb-building species.
View Article and Find Full Text PDFSpider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties.
View Article and Find Full Text PDFSpider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution.
View Article and Find Full Text PDFMany invertebrates possess more than two pairs of eyes - but does eye redundancy aid in ecological diversification? A new study finds varied size adaptation of different eye pairs in spiders, demonstrating how developmental modularity of multi-eyed systems effectively balances selective pressures.
View Article and Find Full Text PDFAbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus .
View Article and Find Full Text PDFSilk production is a prominent characteristic of spiders. The silk is extruded through spigots located on the spinnerets, which are single- to multimembered paired appendages at the end of the abdomen. Most extant spiders have three pairs of spinnerets, and in between either a cribellum (spinning plate) or a colulus (defunct vestigial organ), dividing these spiders into cribellate and ecribellate species.
View Article and Find Full Text PDFPhylogenetic inference has become a standard technique in integrative taxonomy and systematics, as well as in biogeography and ecology. DNA barcodes are often used for phylogenetic inference, despite being strongly limited due to their low number of informative sites. Also, because current DNA barcodes are based on a fraction of a single, fast-evolving gene, they are highly unsuitable for resolving deeper phylogenetic relationships due to saturation.
View Article and Find Full Text PDFMany animals use self-built structures (extended phenotypes) to enhance body functions, such as thermoregulation, prey capture or defence. Yet, it is unclear whether the evolution of animal constructions supplements or substitutes body functions-with disparate feedbacks on trait evolution. Here, using brown spiders (Araneae: marronoid clade), we explored if the evolutionary loss and gain of silken webs as extended prey capture devices correlates with alterations in traits known to play an important role in predatory strikes-locomotor performance (sprint speed) and leg spination (expression of capture spines on front legs).
View Article and Find Full Text PDFGeometric regularity of spider webs has been intensively studied in orb-weaving spiders, although it is not exclusive of orb weavers. Here, we document the geometrically regular, repetitive elements in the webs of the non-orb-weaving groups Leptonetidae and Telemidae for the first time. Similar to orb weavers, we found areas with regularly spaced parallel lines in the webs of , sp.
View Article and Find Full Text PDFSpiders, the most specious taxon of predators, have evolved an astounding range of predatory strategies, including group hunting, specialized silk traps, pheromone-loaded bolas, and aggressive mimicry. Spiders that hunt prey defended with behavioral, mechanical, or chemical means are under additional selection pressure to avoid injury and death. Ants are considered dangerous because they can harm or kill their predators, but some groups of spiders, such as the Theridiidae, have a very high diversification of ant-hunting species and strategies [J.
View Article and Find Full Text PDFTrait databases have become important resources for large-scale comparative studies in ecology and evolution. Here we introduce the AnimalTraits database, a curated database of body mass, metabolic rate and brain size, in standardised units, for terrestrial animals. The database has broad taxonomic breadth, including tetrapods, arthropods, molluscs and annelids from almost 2000 species and 1000 genera.
View Article and Find Full Text PDFA prominent question in animal research is how the evolution of morphology and ecology interacts in the generation of phenotypic diversity. Spiders are some of the most abundant arthropod predators in terrestrial ecosystems and exhibit a diversity of foraging styles. It remains unclear how spider body size and proportions relate to foraging style, and if the use of webs as prey capture devices correlates with changes in body characteristics.
View Article and Find Full Text PDFLike other arthropods, whip spiders of the arachnid order Amblypygi Thorell, 1883 protect themselves against external environmental influences. In this taxon, in addition to the epicuticle, the outermost layer of the exoskeleton, a cement layer (cerotegument) with superhydrophobic properties is deposited over certain body parts. Due to the high level of interspecific variation, the cerotegument structure and the morphology of its associated gland openings have been suggested to be informative for whip spider systematics.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2022
Spider major ampullate (MA) silk is characterized by high strength and toughness and is adaptable across environments. Experiments depriving spiders of protein have enabled researchers to examine nutritionally induced changes in gene expression, protein structures, and bulk properties of MA silk. However, it has not been elucidated if it varies in a similar way at a nanoscale.
View Article and Find Full Text PDFSpiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Do animals set the course for the evolution of their lineage when manipulating their environment? This heavily disputed question is empirically unexplored but critical to interpret phenotypic diversity. Here, we tested whether the macroevolutionary rates of body morphology correlate with the use of built artifacts in a megadiverse clade comprising builders and nonbuilders-spiders. By separating the inferred building-dependent rates from background effects, we found that variation in the evolution of morphology is poorly explained by artifact use.
View Article and Find Full Text PDFLiving systems are built of multiscale-composites: materials formed of components with different properties that are assembled in complex micro- and nano-structures. Such biological multiscale-composites often show outstanding physical properties that are unachieved by artificial materials. A major scientific goal is thus to understand the assembly processes and the relationship between structure and function in order to reproduce them in a new generation of biomimetic high-performance materials.
View Article and Find Full Text PDFPedipalpi Latreille, 1810 is a poorly studied clade of arachnids comprising the whip spiders (Amblypygi Thorell, 1883), short-tailed whip scorpions (Schizomida Petrunkevitch, 1945) and whip scorpions (Thelyphonida Cambridge, 1872). It has recently been shown that whip spiders coat their exoskeleton with a solid cement layer (cerotegument) that forms elaborate microstructures and turns the cuticle into a super-hydrophobic state. The amblypygid cerotegument provides taxonomic information due to its fine structural diversity, but its presence and variation in the sister groups was previously unknown.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
March 2021
A basic feature of animals is the capability to move and disperse. Arachnids are one of the oldest lineages of terrestrial animals and characterized by an octopodal locomotor apparatus with hydraulic limb extension. Their locomotion repertoire includes running, climbing, jumping, but also swimming, diving, abseiling, rolling, gliding and -passively- even flying.
View Article and Find Full Text PDFSpider web anchors are attachment structures composed of the bi-phasic glue-fiber secretion from the piriform silk glands. The mechanical performance of the anchors strongly correlates with the structural assembly of the silk lines, which makes spider silk anchors an ideal system to study the biomechanical function of extended phenotypes and its evolution. It was proposed that silk anchor function guided the evolution of spider web architectures, but its fine-structural variation and whether its evolution was rather determined by changes of the shape of the spinneret tip or in the innate spinning choreography remained unresolved.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
March 2021
Many organisms secrete structural materials from their bodies to enhance protection, foraging or signalling. The function of such secretion products can be further extended by their assembly into complex structures, so-called extended phenotypes, such as shells, nests and biofilms. Understanding the variation in the efficacy of such assembly processes could help to explain why extended phenotypes are common on some lineages and rare in others.
View Article and Find Full Text PDFIt has been suggested that physical interactions between biological and environmental surfaces may constrain ecological niche spaces. However, the mechanistic understanding of niche formation is frequently limited by the lack of information on the function and variation of these interactions. Here, we hypothesised that two closely related species of orb-web spiders have evolved different adhesion performance of web attachment (i.
View Article and Find Full Text PDFPhysical structures built by animals challenge our understanding of biological processes and inspire the development of smart materials and green architecture. It is thus indispensable to understand the drivers, constraints, and dynamics that lead to the emergence and modification of building behavior. Here, we demonstrate that spider web diversification repeatedly followed strikingly similar evolutionary trajectories, guided by physical constraints.
View Article and Find Full Text PDFFungi and arthropods represent some of the most diverse organisms on our planet, yet the ecological relationships between them remain largely unknown. In animals, fungal growth on body surfaces is often hazardous and is known to cause mortality. In contrast, here we report the presence of an apparently non-harmful mycobiome on the cuticle of whip spiders (Arachnida: Amblypygi).
View Article and Find Full Text PDF