Publications by authors named "Jonas N N Eildal"

Background And Purpose: The 5-HT transporter (SERT) is a target for antidepressant drugs. SERT possesses two binding sites: the orthosteric (S1) binding site, which is the presumed target for current SERT inhibitors, and an allosteric (S2) site for which potential therapeutic effects are unknown. The antidepressant drug citalopram displays high-affinity S1 binding and low-affinity S2 binding.

View Article and Find Full Text PDF

PSD-95 is a scaffolding protein of the MAGUK protein family, and engages in several vital protein-protein interactions in the brain with its PDZ domains. It has been suggested that PSD-95 is composed of two supramodules, one of which is the PDZ1-2 tandem domain. Here we have developed rigidified high-affinity dimeric ligands that target the PDZ1-2 supramodule, and established the biophysical parameters of the dynamic PDZ1-2/ligand interactions.

View Article and Find Full Text PDF

One of the most frequent protein-protein interaction modules in mammalian cells is the postsynaptic density 95/discs large/zonula occludens 1 (PDZ) domain, involved in scaffolding and signaling and emerging as an important drug target for several diseases. Like many other protein-protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known.

View Article and Find Full Text PDF

Inhibitors of the serotonin transporter (SERT) and norepinephrine transporter (NET) are widely used in the treatment of major depressive disorder. Although SERT/NET selectivity is a key determinant for the therapeutic properties of these drugs, the molecular determinants defining SERT/NET selectivity are poorly understood. In this study, the structural basis for selectivity of the SERT selective inhibitor citalopram and the structurally closely related NET selective inhibitor talopram is delineated.

View Article and Find Full Text PDF

The protein--protein interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treating ischemic brain diseases, neuropathic pain, and Alzheimer's disease. We have previously demonstrated that N-alkylated tetrapeptides are potent inhibitors of this interaction, and here, this template is exploited for the development of blood plasma-stable and cell-permeable inhibitors. Initially, we explored both the amino acid sequence of the tetrapeptide and the nature of the N-alkyl groups, which consolidated N-cyclohexylethyl-ETAV (1) as the most potent and selective compound.

View Article and Find Full Text PDF

Citalopram and talopram are structurally closely related, but they have very distinct pharmacological profiles as selective inhibitors of the serotonin and norepinephrine transporters, respectively. A systematic structure-activity relationship study was performed, in which each of the four positions distinguishing the two compounds were varied. The inhibitory potencies of the resulting 16 compounds were tested at both serotonin and norepinephrine transporters.

View Article and Find Full Text PDF