Publications by authors named "Jonas Miguet"

The fabrication of microgels, particularly those ranging from tens to hundreds of micrometers in size, represents a thriving area of research, particularly for biologists seeking controlled and isotropic media for cell encapsulation. In this article, we present a novel and robust method for producing structurally homogeneous alginate beads with a reduced environmental footprint, employing a co-flow focusing microfluidic device. These beads can be easily recovered in an oil-free aqueous medium, making the fabrication method highly suitable for diverse applications.

View Article and Find Full Text PDF

Antibubbles are ephemeral objects composed of a liquid drop encapsulated by a thin gas shell immersed in a liquid medium. When the drop is made of a volatile liquid and the medium is superheated, the gas shell inflates at a rate governed by the evaporation flux from the drop. This thermal process represents an alternate strategy for delaying the antibubble collapse.

View Article and Find Full Text PDF

The formation of motion-induced dynamic adsorption layers of surfactants at the surface of rising bubbles is a widely accepted phenomenon. Although their existence and formation kinetics have been theoretically postulated and confirmed in many experimental reports, the investigations primarily remain qualitative in nature. In this paper we present results that, to the best of our knowledge, provide a first quantitative proof of the influence of the dynamic adsorption layer on drainage dynamics of a single foam film formed under dynamic conditions.

View Article and Find Full Text PDF

Surface bubbles are present in many industrial processes and in nature, as well as in carbonated beverages. They have motivated many theoretical, numerical and experimental works. This paper presents the current knowledge on the physics of surface bubbles lifetime and shows the diversity of mechanisms at play that depend on the properties of the bath, the interfaces and the ambient air.

View Article and Find Full Text PDF

Surface bubbles have attracted much interest in the past few decades. In this article, we aim to explore the lifetime and thinning dynamics of centimetric surface bubbles. We study the impact of the bubble size as well as that of the atmospheric humidity through a careful control and systematic variation of the relative humidity in the measuring chamber.

View Article and Find Full Text PDF

Although soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text].

View Article and Find Full Text PDF