Purpose: X-nuclei (also called non-proton MRI) MRI and spectroscopy are limited by the intrinsic low SNR as compared to conventional proton imaging. Clinical translation of x-nuclei examination warrants the need of a robust and versatile tool improving image quality for diagnostic use. In this work, we compare a novel denoising method with fewer inputs to the current state-of-the-art denoising method.
View Article and Find Full Text PDFMP-PCA denoising has become the method of choice for denoising MRI data since it provides an objective threshold to separate the signal components from unwanted thermal noise components. In rodents, thermal noise in the coils is an important source of noise that can reduce the accuracy of activation mapping in fMRI. Further confounding this problem, vendor data often contains zero-filling and other post-processing steps that may violate MP-PCA assumptions.
View Article and Find Full Text PDFPurpose: To develop a denoising strategy leveraging redundancy in high-dimensional data.
Theory And Methods: The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values.
Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure.
View Article and Find Full Text PDFInformation about tissue on the microscopic and mesoscopic scales can be accessed by modelling diffusion MRI signals, with the aim of extracting microstructure-specific biomarkers. The standard model (SM) of diffusion, currently the most broadly adopted microstructural model, describes diffusion in white matter (WM) tissues by two Gaussian components, one of which has zero radial diffusivity, to represent diffusion in intra- and extra-axonal water, respectively. Here, we reappraise these SM assumptions by collecting comprehensive double diffusion encoded (DDE) MRI data with both linear and planar encodings, which was recently shown to substantially enhance the ability to estimate SM parameters.
View Article and Find Full Text PDFOptimal nutrition is important after preterm birth to facilitate normal brain development. Human milk is rich in sialic acid and preterm infants may benefit from supplementing formula with sialyllactose to support neurodevelopment. Using pigs as models, we hypothesized that sialyllactose supplementation improves brain development after preterm birth.
View Article and Find Full Text PDFPurpose: Multi-exponential relaxometry is a powerful tool for characterizing tissue, but generally requires high image signal-to-noise ratio (SNR). This work evaluates the use of principal-component-analysis (PCA) denoising to mitigate these SNR demands and improve the precision of relaxometry measures.
Methods: PCA denoising was evaluated using both simulated and experimental MRI data.
Designing novel diffusion-weighted pulse sequences to probe tissue microstructure beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often not strictly fulfilled.
View Article and Find Full Text PDFBiophysical modelling of diffusion MRI is necessary to provide specific microstructural tissue properties. However, estimating model parameters from data with limited diffusion gradient strength, such as clinical scanners, has proven unreliable due to a shallow optimization landscape. On the other hand, estimation of diffusion kurtosis (DKI) parameters is more robust, and its parameters may be connected to microstructural parameters, given an appropriate biophysical model.
View Article and Find Full Text PDF