Publications by authors named "Jonas Kosten"

Aggregation of hyperphosphorylated TDP-43 is the hallmark pathological feature of the most common molecular form of frontotemporal lobar degeneration (FTLD-TDP) and in the vast majority of cases with amyotrophic lateral sclerosis (ALS-TDP). However, most of the specific phosphorylation sites remain to be determined, and their relevance regarding pathogenicity and clinical and pathological phenotypic diversity in FTLD-TDP and ALS-TDP remains to be identified. Here, we generated a novel antibody raised against TDP-43 phosphorylated at serine 375 (pTDP-43) located in the low-complexity domain, and used it to investigate the presence of S375 phosphorylation in a series (n = 44) of FTLD-TDP and ALS-TDP cases.

View Article and Find Full Text PDF

Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution.

View Article and Find Full Text PDF

Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.

View Article and Find Full Text PDF

S129-phosphorylated alpha-synuclein (α-syn) is abundantly found in Lewy-body inclusions of Parkinson's disease patients. Residues neighboring S129 include the α-syn tyrosine phosphorylation sites Y125, Y133, and Y136. Here, we use time-resolved NMR spectroscopy to delineate atomic resolution insights into the modification behaviors of different serine and tyrosine kinases targeting these sites and show that Y125 phosphorylation constitutes a necessary priming event for the efficient modification of S129 by CK1, both in reconstituted kinase reactions and mammalian cell lysates.

View Article and Find Full Text PDF

Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy.

View Article and Find Full Text PDF