Publications by authors named "Jonas Kalderstam"

We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups.

View Article and Find Full Text PDF

Background: A bone scan is a common method for monitoring bone metastases in patients with advanced prostate cancer. The Bone Scan Index (BSI) measures the tumor burden on the skeleton, expressed as a percentage of the total skeletal mass. Previous studies have shown that BSI is associated with survival of prostate cancer patients.

View Article and Find Full Text PDF

Objective: The concordance index (c-index) is the standard way of evaluating the performance of prognostic models in the presence of censored data. Constructing prognostic models using artificial neural networks (ANNs) is commonly done by training on error functions which are modified versions of the c-index. Our objective was to demonstrate the capability of training directly on the c-index and to evaluate our approach compared to the Cox proportional hazards model.

View Article and Find Full Text PDF