Publications by authors named "Jonas Handwerker"

Hyperpolarization techniques increase nuclear spin polarization by more than four orders of magnitude, enabling metabolic MRI. Even though hyperpolarization has shown clear value in clinical studies, the complexity, cost and slowness of current equipment limits its widespread use. Here, a polarization procedure of [1- C]pyruvate based on parahydrogen-induced polarization by side-arm hydrogenation (PHIP-SAH) in an automated polarizer is demonstrated.

View Article and Find Full Text PDF

We present a versatile method for the preparation of hyperpolarized [1-C]fumarate as a contrast agent for preclinical MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems.

View Article and Find Full Text PDF

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T).

View Article and Find Full Text PDF

Magnetic resonance imaging and spectroscopy are versatile methods for probing brain physiology, but their intrinsically low sensitivity limits the achievable spatial and temporal resolution. Here, we introduce a monolithically integrated NMR-on-a-chip needle that combines an ultra-sensitive 300 µm NMR coil with a complete NMR transceiver, enabling in vivo measurements of blood oxygenation and flow in nanoliter volumes at a sampling rate of 200 Hz.

View Article and Find Full Text PDF

Purpose: The aim of this study was to compare prospective head motion correction and motion tracking abilities of two tracking systems: Active NMR field probes and a Moiré phase tracking camera system using an optical marker.

Methods: Both tracking systems were used simultaneously on human subjects. The prospective head motion correction was compared in an MP2RAGE and a gradient echo sequence.

View Article and Find Full Text PDF

In this paper, we present a fully-integrated receiver for NMR microscopy applications manufactured in a 0.13μm CMOS technology. The design co-integrates a 10-turn planar detection coil together with a complete quadrature, low-IF downconversion receiver on a single chip, which operates from a single 1.

View Article and Find Full Text PDF