Publications by authors named "Jonas Haller"

Article Synopsis
  • Airport malaria, while rare, is becoming more common in Europe and presents diagnostic challenges, as seen in a cluster of cases among employees at Frankfurt International Airport in 2022.
  • Three employees were diagnosed with malaria despite no recent travel to affected areas, with two cases occurring within a week and one after ten weeks, but all individuals fully recovered.
  • Investigations revealed flights from malaria-endemic countries and a parcel from Ghana, but efforts to identify the source were inconclusive; genomic analysis linked the cases and emphasized the need for effective outbreak response to prevent severe malaria.
View Article and Find Full Text PDF

Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC)(L)H] species (NHC = N-heterocyclic carbene; L = vacant, H, N, CO, MeCN, O, P, SO, H, F and Cl), as well as selected phosphine analogues [Ru(RPCHCHPR)(L)H] (R = Pr, Cy; L = vacant, O). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl, F) being reinforced by the contribution from spin-orbit coupling.

View Article and Find Full Text PDF

Density functional theory calculations have been employed to investigate the mechanism of gold(I)-catalysed rearrangements of cyclopropenes. Product formation is controlled by the initial ring-opening step which results in the formation of a gold-stabilised carbocation/gold carbene intermediate. With 3-phenylcyclopropene-3-methylcarboxylate, the preferred intermediate allows cyclisation via nucleophilic attack of the carbonyl group and hence butenolide formation.

View Article and Find Full Text PDF

Rhodation of trimethylene-bridged diimidazolium salts induces the intramolecular activation of an alkane-type C-H bond and yields mono- and dimetallic complexes containing a formally monoanionic C,C,C-tridentate dicarbene ligand bound to each rhodium centre. Mechanistic investigation of the C(alkyl)-H bond activation revealed a significant rate enhancement when the carbene ligands are bound to the rhodium centre via C4 (instantaneous activation) as compared to C2-bound carbene homologues (activation incomplete after 2 days). The slow C-H activation in normal C2-bound carbene complexes allowed intermediates to be isolated and suggests a critical role of acetate in mediating the bond activation process.

View Article and Find Full Text PDF

A combination of experimental studies and density functional theory calculations is used to study C-N bond activation in a series of ruthenium N-alkyl-substituted heterocyclic carbene (NHC) complexes. These show that prior C-H activation of the NHC ligand renders the system susceptible to irreversible C-N activation. In the presence of a source of HCl, C-H activated Ru(I(i)Pr(2)Me(2))'(PPh(3))(2)(CO)H (1, I(i)Pr(2)Me(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) reacts to give Ru(I(i)PrHMe(2))(PPh(3))(2)(CO)HCl (2, I(i)PrHMe(2) = 1-isopropyl-4,5-dimethylimidazol-2-ylidene) and propene.

View Article and Find Full Text PDF

The five-coordinate ruthenium N-heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr(2)Me(2))(4)H][BAr(F) (4)] (1; IiPr(2)Me(2)=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; Ar(F)=3,5-(CF(3))(2)C(6)H(3)), [Ru(IEt(2)Me(2))(4)H][BAr(F) (4)] (2; IEt(2)Me(2)=1,3-diethyl-4,5-dimethylimidazol-2-ylidene) and [Ru(IMe(4))(4)H][BAr(F) (4)] (3; IMe(4)=1,3,4,5-tetramethylimidazol-2-ylidene) have been synthesised following reaction of [Ru(PPh(3))(3)HCl] with 4-8 equivalents of the free carbenes at ambient temperature. Complexes 1-3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about delta -41.

View Article and Find Full Text PDF

Reaction of the purple tetrakiscarbene ruthenium cation [Ru(I(i)Pr(2)Me(2))(4)H](+) (1, I(i)Pr(2)Me(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with oxygen affords the pink eta(2)-O(2) hydride species [Ru(I(i)Pr(2)Me(2))(4)(eta(2)-O(2))H](+) (2). 2 displays (i) a very facile, reversible O(2) coordination and (ii) an unexpectedly positive hydride chemical shift, and both these features can be predicted and explained by density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Deuterium labeling studies indicate that base-induced intramolecular C-H activation in the agostic complex 2-D proceeds with exclusive removal of a proton from the methyl arm of an (i)Pr substituent on the N-heterocyclic carbene (NHC) ligand. Computational studies show that this alkyl C-H bond activation reaction involves deprotonation of one of the C-H bonds that is geminal to the agostic interaction, rather than the agostic C-H bond itself. The reaction is readily accessible at room temperature, and a computed activation barrier of DeltaE (double dagger)(calcd) = +11.

View Article and Find Full Text PDF

The synthesis of [Np(VI)O(2)Cl(2)(thf)](n) offers the potential for more detailed exploration of neptunyl(vi) chemistry, while the synthesis of the mixed valence cluster complex [{Np(VI)O(2)Cl(2)}{Np(V)O(2)Cl(thf)(3)}(2)] allows molecular neptunyl(v) 'cation-cation' interactions to be probed.

View Article and Find Full Text PDF

Phosphinimine ligands (Cy3PNH) readily react with UO2Cl2(THF)3 (THF=tetrahydrofuran) to give UO2Cl2(Cy3PNH)2, which contains strong U-N interactions and exists as cis and trans isomers in the solid and solution state. Solution NMR experiments and computational analysis both support the trans form as the major isomer in solution, although the cis isomer becomes more stabilized with an increase in the dielectric constant of the solvent. Mayer bond orders, energy decomposition analysis, and examination of the molecular orbitals and total electron densities support a more covalent bonding interaction in the U-NHPCy3 bond compared with the analogous bond of the related U-OPCy3 compounds.

View Article and Find Full Text PDF

Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly.

View Article and Find Full Text PDF