Microbial infections are a global health problem, particularly as microbes are continually developing resistance to antimicrobial treatments. An effective and reliable method for testing the virulence of different microbial pathogens is therefore a useful research tool. This protocol describes how the chicken embryo can be used as a trustworthy, inexpensive, ethically desirable and quickly accessible model to assess the virulence of the human bacterial pathogen Listeria monocytogenes, which can also be extended to other microbial pathogens.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2015
Listeria monocytogenes is a bacterial pathogen capable of causing severe infections in humans, often with fatal outcomes. Many different animal models exist to study L. monocytogenes pathogenicity, and we have investigated the chicken embryo as an infection model: What are the benefits and possible drawbacks? We have compared a defined wild-type strain with its isogenic strains lacking well-characterized virulence factors.
View Article and Find Full Text PDFRNA-based pathways that regulate protein expression are much more widespread than previously thought. Regulatory RNAs, including 5' and 3' untranslated regions next to the coding sequence, cis-acting antisense RNAs and trans-acting small non-coding RNAs, are effective regulatory molecules that can influence protein expression and function in response to external cues such as temperature, pH and levels of metabolites. This Review discusses the mechanisms by which these regulatory RNAs, together with accessory proteins such as RNases, control the fate of mRNAs and proteins and how this regulation influences virulence in pathogenic bacteria.
View Article and Find Full Text PDFRiboswitches are RNA elements acting in cis, controlling expression of their downstream genes through a metabolite-induced alteration of their secondary structure. Here, we demonstrate that two S-adenosylmethionine (SAM) riboswitches, SreA and SreB, can also function in trans and act as noncoding RNAs in Listeria monocytogenes. SreA and SreB control expression of the virulence regulator PrfA by binding to the 5'-untranslated region of its mRNA.
View Article and Find Full Text PDFThe bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown.
View Article and Find Full Text PDFThe Gram-positive bacterium Listeria monocytogenes uses a wide range of virulence factors for its pathogenesis. Expression of five of these factors has previously been shown to be subjected to post-transcriptional regulation as a result of their long 5'-untranslated region (5'-UTR). We have investigated the presence of 5'-UTRs among the other known virulence genes and genes that encode putatively virulence-associated surface proteins.
View Article and Find Full Text PDF