Enriching tree species-poor and less productive forests by introducing economically valuable species is a strategy proposed for achieving multipurpose forest management. However, empirical evidence from managed and mature forests on the impact of this enrichment on ecological (multidiversity and ecosystem multifunctionality) and economic dimensions remains scarce, particularly when nonnative species are used. Here, we propose and test a framework that integrates economic multifunctionality, encompassing timber production-oriented goals and resistance against disturbances, with multidiversity and ecosystem multifunctionality in European beech forest stands enriched with conifers.
View Article and Find Full Text PDFEstimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data.
View Article and Find Full Text PDFAutomated species classification from 3D point clouds is still a challenge. It is, however, an important task for laser scanning-based forest inventory, ecosystem models, and to support forest management. Here, we tested the performance of an image classification approach based on convolutional neural networks (CNNs) with the aim to classify 3D point clouds of seven tree species based on 2D representation in a computationally efficient way.
View Article and Find Full Text PDFBackground: Old-growth and primeval forests are passing through a natural development cycle with recurring stages of forest development. Several methods for assigning patches of different structure and size to forest development stages or phases do exist. All currently existing classification methods have in common that a priori assumptions about the characteristics of certain stand structural attributes such as deadwood amount are made.
View Article and Find Full Text PDFHemispherical photography is a well-established method to optically assess ecological parameters related to plant canopies; e.g. ground-level light regimes and the distribution of foliage within the crown space.
View Article and Find Full Text PDF