Publications by authors named "Jonas Elfert"

We herein report radical hydroazidation and hydrohalogenation of mono-, di- and trisubstituted alkenes through iron catalysis. The alkene moiety that often occurs as a functionality in natural products is readily transformed into useful building blocks through this approach. Commercially available tosylates and α-halogenated esters are used as radical trapping reagents in combination with silanes as reductants.

View Article and Find Full Text PDF

A Ni-catalyzed reductive carboxylation of substituted aziridines with CO at atmospheric pressure is disclosed. The protocol is characterized by its mild conditions, experimental ease, and exquisite chemo- and regioselectivity pattern, thus unlocking a new catalytic blueprint to access β-amino acids, important building blocks with considerable potential as peptidomimetics.

View Article and Find Full Text PDF

The C-C bond in homoallylic alcohols can be activated under basic conditions, qualifying these nonstrained acyclic systems as radical allylation reagents. This reactivity is exemplified by photoinitiated (with visible light and/or blue LEDs) allylation of perfluoroalkyl and alkyl radicals generated from perfluoroalkyl iodides and alkylpyridinium salts, respectively, with homoallylic alcohols. C-radical addition to the double bond of the title reagents and subsequent base-promoted homolytic C-C cleavage leads to the formation of the corresponding allylated products along with ketyl radicals that act as single electron reductants to sustain the chain reactions.

View Article and Find Full Text PDF