Publications by authors named "Jonas Denck"

Adverse drug events (ADEs) are responsible for a significant number of hospital admissions and fatalities. Machine learning models have been developed to assess the individual patient risk of having an ADE. In this article, we have reviewed studies addressing the prediction of ADEs in observational health data with machine learning.

View Article and Find Full Text PDF

Automated protocoling for MRI examinations is an amendable target for workflow automation with artificial intelligence. However, there are still challenges to overcome for a successful and robust approach. These challenges are outlined and analyzed in this work.

View Article and Find Full Text PDF

A magnetic resonance imaging (MRI) exam typically consists of the acquisition of multiple MR pulse sequences, which are required for a reliable diagnosis. With the rise of generative deep learning models, approaches for the synthesis of MR images are developed to either synthesize additional MR contrasts, generate synthetic data, or augment existing data for AI training. While current generative approaches allow only the synthesis of specific sets of MR contrasts, we developed a method to generate synthetic MR images with adjustable image contrast.

View Article and Find Full Text PDF

Purpose: A magnetic resonance imaging (MRI) exam typically consists of several sequences that yield different image contrasts. Each sequence is parameterized through multiple acquisition parameters that influence image contrast, signal-to-noise ratio, acquisition time, and/or resolution. Depending on the clinical indication, different contrasts are required by the radiologist to make a diagnosis.

View Article and Find Full Text PDF

Although the level of digitalization and automation steadily increases in radiology, billing coding for magnetic resonance imaging (MRI) exams in the radiology department is still based on manual input from the technologist. After the exam completion, the technologist enters the corresponding exam codes that are associated with billing codes in the radiology information system. Moreover, additional billing codes are added or removed, depending on the performed procedure.

View Article and Find Full Text PDF