Artificial neural networks show promising performance in detecting correlations within data that are associated with specific outcomes. However, the black-box nature of such models can hinder the knowledge advancement in research fields by obscuring the decision process and preventing scientist to fully conceptualize predicted outcomes. Furthermore, domain experts like healthcare providers need explainable predictions to assess whether a predicted outcome can be trusted in high stakes scenarios and to help them integrating a model into their own routine.
View Article and Find Full Text PDFMotivation: The size of available omics datasets is steadily increasing with technological advancement in recent years. While this increase in sample size can be used to improve the performance of relevant prediction tasks in healthcare, models that are optimized for large datasets usually operate as black boxes. In high-stakes scenarios, like healthcare, using a black-box model poses safety and security issues.
View Article and Find Full Text PDFMotivation: Machine learning methods can be used to support scientific discovery in healthcare-related research fields. However, these methods can only be reliably used if they can be trained on high-quality and curated datasets. Currently, no such dataset for the exploration of Plasmodium falciparum protein antigen candidates exists.
View Article and Find Full Text PDFObjective: Loss of balance control can have serious consequences on interaction between humans and machines as well as the general well-being of humans. Perceived balance perturbations are always accompanied by a specific cortical activation, the so-called perturbation-evoked potential (PEP). In this study, we investigate the possibility to classify PEPs from ongoing EEG.
View Article and Find Full Text PDFIn order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems.
View Article and Find Full Text PDF