Rationale: High frequency oscillations (HFO; ripples = 80-200, fast ripples 200-500 Hz) are promising epileptic biomarkers in patients with epilepsy. However, especially in temporal epilepsies differentiation of epileptic and physiological HFO activity still remains a challenge. Physiological sleep-spindle-ripple formations are known to play a role in slow-wave-sleep memory consolidation.
View Article and Find Full Text PDFHigh frequency oscillations (HFO) are promising biomarkers of epileptic tissue. While group analysis suggested a correlation between surgical removal of HFO generating tissue and seizure free outcome, HFO could not predict seizure outcome on an individual patient level. One possible explanation is the lack of differentiation between physiological and epileptic HFO.
View Article and Find Full Text PDFObjective: High-frequency-oscillations (HFO) and interictal-epileptic-spikes (IES) are spatial biomarkers of the epileptogenic-zone. Those HFO spatially and temporally co-occurring with IES (IES-HFO) are potentially superior biomarkers, their use is however challenged by the difficulty in detecting the low amplitude HFO riding the high-amplitude and steep-waveform of IES. We aim to develop an automatic HFO detector with an improved performance with respect to current methods and that also correctly distinguishes IES-HFO from IES occurring in isolation (isol-IES).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
High Frequency Oscillations (HFOs) have been described as biomarkers of epileptogenic tissue; however their pathological/physiological classification poses a challenge to their predictive power. For the population of ripples co-occurring with sleep spindles, those ripples improving the antiparallel correlation of ripple-peaks and sleep spindle-troughs were classified as coupled-ripples and the rest as uncoupled-ripples. For the same population of ripples two reference groups called in-SOZ and non-SOZ were formed according to the ripples' location inside or outside the seizure onset zone (SOZ).
View Article and Find Full Text PDFHigh frequency oscillations (HFOs, 80-500[Formula: see text]Hz) serve as novel electroencephalography (EEG) markers of epileptic tissue. The differentiation of physiological and epileptic HFO is an important challenge and is complicated by the fact that both types are generated in mesiotemporal structures. This study aimed to identify oscillation features that serve to distinguish physiological ripples associated with sleep spindles and epileptic ripples.
View Article and Find Full Text PDF