Publications by authors named "Jonas Behr"

Background: Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood.

Results: Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes.

View Article and Find Full Text PDF

Large-scale genomic data highlight the complexity and diversity of the molecular changes that drive cancer progression. Statistical analysis of cancer data from different tissues can guide drug repositioning as well as the design of targeted treatments. Here, we develop an improved Bayesian network model for tumour mutational profiles and apply it to 8198 patient samples across 22 cancer types from TCGA.

View Article and Find Full Text PDF

Motivation: Several molecular events are known to be cancer-related, including genomic aberrations, hypermethylation of gene promoter regions and differential expression of microRNAs. These aberration events are very heterogeneous across tumors and it is poorly understood how they affect the molecular makeup of the cell, including the transcriptome and proteome. Protein interaction networks can help decode the functional relationship between aberration events and changes in gene and protein expression.

View Article and Find Full Text PDF

Background: Next-generation sequencing of matched tumor and normal biopsy pairs has become a technology of paramount importance for precision cancer treatment. Sequencing costs have dropped tremendously, allowing the sequencing of the whole exome of tumors for just a fraction of the total treatment costs. However, clinicians and scientists cannot take full advantage of the generated data because the accuracy of analysis pipelines is limited.

View Article and Find Full Text PDF

Plants use light as source of energy and information to detect diurnal rhythms and seasonal changes. Sensing changing light conditions is critical to adjust plant metabolism and to initiate developmental transitions. Here, we analyzed transcriptome-wide alterations in gene expression and alternative splicing (AS) of etiolated seedlings undergoing photomorphogenesis upon exposure to blue, red, or white light.

View Article and Find Full Text PDF

Motivation: Mapping high-throughput sequencing data to a reference genome is an essential step for most analysis pipelines aiming at the computational analysis of genome and transcriptome sequencing data. Breaking ties between equally well mapping locations poses a severe problem not only during the alignment phase but also has significant impact on the results of downstream analyses. We present the multi-mapper resolution (MMR) tool that infers optimal mapping locations from the coverage density of other mapped reads.

View Article and Find Full Text PDF

The nonsense-mediated decay (NMD) surveillance pathway can recognize erroneous transcripts and physiological mRNAs, such as precursor mRNA alternative splicing (AS) variants. Currently, information on the global extent of coupled AS and NMD remains scarce and even absent for any plant species. To address this, we conducted transcriptome-wide splicing studies using Arabidopsis thaliana mutants in the NMD factor homologs UP FRAMESHIFT1 (UPF1) and UPF3 as well as wild-type samples treated with the translation inhibitor cycloheximide.

View Article and Find Full Text PDF

Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction.

Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification.

View Article and Find Full Text PDF

Genetic differences between Arabidopsis thaliana accessions underlie the plant's extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes.

View Article and Find Full Text PDF

We present a highly accurate gene-prediction system for eukaryotic genomes, called mGene. It combines in an unprecedented manner the flexibility of generalized hidden Markov models (gHMMs) with the predictive power of modern machine learning methods, such as Support Vector Machines (SVMs). Its excellent performance was proved in an objective competition based on the genome of the nematode Caenorhabditis elegans.

View Article and Find Full Text PDF

We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms.

View Article and Find Full Text PDF

Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks.

Results: In this work we consider Support Vector Machines for splice site recognition.

View Article and Find Full Text PDF