Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients.
View Article and Find Full Text PDFThe study of response to cancer treatments has benefited greatly from the contribution of different omics data but their interpretation is sometimes difficult. Some mathematical models based on prior biological knowledge of signaling pathways facilitate this interpretation but often require fitting of their parameters using perturbation data. We propose a more qualitative mechanistic approach, based on logical formalism and on the sole mapping and interpretation of omics data, and able to recover differences in sensitivity to gene inhibition without model training.
View Article and Find Full Text PDFBackground: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality world wide and constitutes the third most common malignancy in women. The RAIDs consortium (http://www.raids-fp7.
View Article and Find Full Text PDFA persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from different biological levels and origins into models. In this study, we use the recently proposed computational approach iSCHRUNK (in Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models), which combines Monte Carlo parameter sampling methods and machine learning techniques, in the context of Bayesian inference.
View Article and Find Full Text PDFLogical models of cancer pathways are typically built by mining the literature for relevant experimental observations. They are usually generic as they apply for large cohorts of individuals. As a consequence, they generally do not capture the heterogeneity of patient tumors and their therapeutic responses.
View Article and Find Full Text PDF