Publications by authors named "Jonas Albarnaz"

Modified vaccinia Ankara (MVA) virus does not replicate in human cells and is the vaccine deployed to curb the current outbreak of mpox. Here, we conduct a multiplexed proteomic analysis to quantify >9000 cellular and ~80% of viral proteins throughout MVA infection of human fibroblasts and macrophages. >690 human proteins are down-regulated >2-fold by MVA, revealing a substantial remodelling of the host proteome.

View Article and Find Full Text PDF

Human tripartite motif protein 5α (TRIM5α) is a well-characterized restriction factor for some RNA viruses, including HIV; however, reports are limited for DNA viruses. Here we demonstrate that TRIM5α also restricts orthopoxviruses and, via its SPRY domain, binds to the orthopoxvirus capsid protein L3 to diminish virus replication and activate innate immunity. In response, several orthopoxviruses, including vaccinia, rabbitpox, cowpox, monkeypox, camelpox and variola viruses, deploy countermeasures.

View Article and Find Full Text PDF

The capacity of host cells to detect and restrict an infecting virus rests on an array of cell-autonomous antiviral effectors and innate immune receptors that can trigger inflammatory processes at tissue and organismal levels. Dynamic changes in protein abundance, subcellular localisation, post-translational modifications and interactions with other biomolecules govern these processes. Proteomics is therefore an ideal experimental tool to discover novel mechanisms of host antiviral immunity.

View Article and Find Full Text PDF

Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood.

View Article and Find Full Text PDF

Cellular proteins often have multiple and diverse functions. This is illustrated with protein Spir-1 that is an actin nucleator, but, as shown here, also functions to enhance innate immune signalling downstream of RNA sensing by RIG-I/MDA-5. In human and mouse cells lacking Spir-1, IRF3 and NF-κB-dependent gene activation is impaired, whereas Spir-1 overexpression enhanced IRF3 activation.

View Article and Find Full Text PDF

Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP.

View Article and Find Full Text PDF

Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly.

View Article and Find Full Text PDF

Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes.

View Article and Find Full Text PDF

The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described.

View Article and Find Full Text PDF

The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs).

View Article and Find Full Text PDF

Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation.

View Article and Find Full Text PDF

The Ras-Raf-MEK-ERK1/2 signaling pathway regulates fundamental processes in malignant cells. However, the exact contributions of MEK1 and MEK2 to the development of cancer remain to be established. We studied the effects of MEK small-molecule inhibitors (PD98059 and U0126) and MEK1 and MEK2 knock-down on cell proliferation, apoptosis and MAPK activation.

View Article and Find Full Text PDF

The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions.

View Article and Find Full Text PDF

Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity.

View Article and Find Full Text PDF

Acanthamoeba is a genus of free-living amoebas distributed worldwide. Few studies have explored the interactions between these protozoa and their infecting giant virus, Acanthamoeba polyphaga mimivirus (APMV). Here we show that, once the amoebal encystment is triggered, trophozoites become significantly resistant to APMV.

View Article and Find Full Text PDF

Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection.

View Article and Find Full Text PDF

Background: The identification of novel giant viruses from the nucleocytoplasmic large DNA viruses group and their virophages has increased in the last decade and has helped to shed light on viral evolution. This study describe the discovery, isolation and characterization of Samba virus (SMBV), a novel giant virus belonging to the Mimivirus genus, which was isolated from the Negro River in the Brazilian Amazon. We also report the isolation of an SMBV-associated virophage named Rio Negro (RNV), which is the first Mimivirus virophage to be isolated in the Americas.

View Article and Find Full Text PDF

Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections.

View Article and Find Full Text PDF

Shellfish can bioaccumulate in their tissues pathogenic contaminants present in water and they have been related with several outbreaks of food-borne diseases worldwide. With their increased population in urban areas, gulls have been reported as an important source of water environment contamination. During a 10-month period, water, gulls feces and oyster samples were collected in a shellfish harvesting site and analyzed for total and fecal coliform counts (water) and Salmonella presence (gull feces and oyster meat).

View Article and Find Full Text PDF

The State of Santa Catarina produces the greatest quantity of edible mollusks in Brazil. To guarantee sanitary qualify, mollusk cultures should be monitored for contamination by pathogenic microorganisms. A self-purification or "depuration" system that eliminates Salmonella enterica serovar Typhimurium contamination from oysters has been developed and evaluated.

View Article and Find Full Text PDF