Publications by authors named "Jonah-Micah Jocson"

DNA has long been viewed as a promising material for nanoscale electronics, in part due to its well-ordered arrangement of stacked, pi-conjugated base pairs. Within this context, a number of studies have investigated how structural changes, backbone modifications, or artificial base substitutions affect the conductivity of DNA. Herein, we present a comparative study of the electrical properties of both well-matched and perylene-3,4,9,10-tetracarboxylic diimide (PTCDI)-containing DNA molecular wires that bridge nanoscale gold electrodes.

View Article and Find Full Text PDF

Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires.

View Article and Find Full Text PDF

Perylene-3,4,9,10-tetracarboxylic diimides (PTCDIs) are a well-known class of organic materials. Recently, these molecules have been incorporated within DNA as base surrogates, finding ready applications as probes of DNA structure and function. However, the assembly dynamics and kinetics of PTCDI DNA base surrogates have received little attention to date.

View Article and Find Full Text PDF

Protein-DNA interactions play a central role in many cellular processes, and their misregulation has been implicated in a number of human diseases. Thus, there is a pressing need for the development of analytical strategies for interrogating the binding of proteins to DNA. Herein, we report the electrical monitoring of a prototypical DNA-binding protein, the PvuII restriction enzyme, at microfluidic-encapsulated, DNA-modified carbon nanotube field effect transistors.

View Article and Find Full Text PDF

Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal-organic frameworks. Within this context, bulk proton conductors from naturally occurring proteins have received somewhat less attention than other materials, which is surprising given the potential modularity, tunability and processability of protein-based materials.

View Article and Find Full Text PDF

In nature, cephalopods employ unique dynamic camouflage mechanisms. Herein, we draw inspiration from self-assembled structures found in cephalopods to fabricate tunable biomimetic camouflage coatings. The reflectance of these coatings is dynamically modulated between the visible and infrared regions of the electromagnetic spectrum in situ.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc9fu7fld62066179chttd6p59ob0e4uv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once