The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P.
View Article and Find Full Text PDFUnlabelled: The molecular force of blood-stage infection (FOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between FOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where () hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new () and blood-stage infections/year (FOB = 0-18, FOB = 0-23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections.
View Article and Find Full Text PDFand have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of and throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG.
View Article and Find Full Text PDFBackground: Drug resistance remains a major obstacle to malaria treatment and control. It can arise and spread rapidly, and vary substantially even at sub-national level. National malaria programmes require cost-effective and timely ways of characterizing drug-resistance at multiple sites within their countries.
View Article and Find Full Text PDFIntermittent preventive treatment of infants (IPTi) reduces early childhood malaria-related morbidity. While genotypic drug resistance markers have proven useful in predicting the efficacy of antimalarial drugs in case management, there are few equivalent data relating to their protective efficacy when used as IPTi. The present data from an IPTi trial in Papua New Guinea demonstrate how these markers can predict protective efficacy of IPTi for both Plasmodium falciparum and Plasmodium vivax.
View Article and Find Full Text PDFIn Papua New Guinea the aetiology of febrile illnesses remains poorly characterized, mostly due to poor diagnostic facilities and the inaccessibility of much of the rural areas of the country. We investigated the aetiological agents of febrile illnesses for 136 people presenting to Wipim Health Centre in Western Province, Papua New Guinea. Arboviral and rickettsial real-time polymerase chain reaction (PCR) assays, malaria blood smears and a malaria PCR test were used to identify pathogens associated with a history of fever.
View Article and Find Full Text PDFBackground: Intermittent preventive treatment in infants (IPTi) has been shown in randomized trials to reduce malaria-related morbidity in African infants living in areas of high Plasmodium falciparum (Pf) transmission. It remains unclear whether IPTi is an appropriate prevention strategy in non-African settings or those co-endemic for P. vivax (Pv).
View Article and Find Full Text PDFBackground: Reports of severe cases and increasing levels of drug resistance highlight the importance of improved Plasmodium vivax case management. Whereas monitoring P. vivax resistance to anti-malarial drug by in vivo and in vitro tests remain challenging, molecular markers of resistance represent a valuable tool for high-scale analysis and surveillance studies.
View Article and Find Full Text PDFAs the last part of a program to survey the extent of malaria transmission in the Papua New Guinea highlands, a series of rapid malaria surveys were conducted in 2003-2004 and 2005 in different parts of Southern Highlands Province. Malaria was found to be highly endemic in Lake Kutubu (prevalence rate (PR): 17-33%), moderate to highly endemic in Erave (PR: 10-31%) and moderately endemic in low-lying parts (< 1500 m) of Poroma and Kagua (PR: 12-17%), but was rare or absent elsewhere. A reported malaria epidemic prior to the 2004 surveys could be confirmed for the Poroma (PR: 26%) but not for the lower Kagua area.
View Article and Find Full Text PDFBackground: Accurate diagnosis of Plasmodium infections is essential for malaria morbidity and mortality reduction in tropical areas. Despite great advantages of light microscopy (LM) for malaria diagnosis, its limited sensitivity is a critical shortfall for epidemiological studies. Robust molecular diagnostics tools are thus needed.
View Article and Find Full Text PDFAlthough not strictly a highlands province, Morobe encompasses large highlands areas, the most important being Aseki, Menyamya and Wau-Bulolo. A series of rapid malaria surveys conducted in both the wet and dry seasons found malaria to be clearly endemic in areas below 1400 m in Menyamya and Wau-Bulolo, with overall prevalence rates in the wet season (25.5%, range: 9.
View Article and Find Full Text PDF