There are many open questions about the mechanisms that coordinate the dynamic, multicellular behaviors required for organogenesis. Synthetic circuits that can record in vivo signaling networks have been critical in elucidating animal development. Here, we report on the transfer of this technology to plants using orthogonal serine integrases to mediate site-specific and irreversible DNA recombination visualized by switching between fluorescent reporters.
View Article and Find Full Text PDFThe development of multicellular organisms has been studied for centuries, yet many critical events and mechanisms of regulation remain challenging to observe directly. Early research focused on detailed observational and comparative studies. Molecular biology has generated insights into regulatory mechanisms, but only for a limited number of species.
View Article and Find Full Text PDFRoot architecture is a major determinant of plant fitness and is under constant modification in response to favorable and unfavorable environmental stimuli. Beyond impacts on the primary root, the environment can alter the position, spacing, density, and length of secondary or lateral roots. Lateral root development is among the best-studied examples of plant organogenesis, yet there are still many unanswered questions about its earliest steps.
View Article and Find Full Text PDF