are an important model system for research on host-microbe interaction. Their rapid life cycle, short lifespan, and transparent body structure allow simple quantification of microbial load and the influence of microbial exposure on host survival. host-microbe interaction studies typically examine group survival and infection severity at fixed timepoints.
View Article and Find Full Text PDF3-hydroxyanthranilic acid (3HAA) is considered to be a fleeting metabolic intermediate along tryptophan catabolism through the kynurenine pathway. 3HAA and the rest of the kynurenine pathway have been linked to immune response in mammals yet whether it is detrimental or advantageous is a point of contention. Recently we have shown that accumulation of this metabolite, either through supplementation or prevention of its degradation, extends healthy lifespan in and mice, while the mechanism remained unknown.
View Article and Find Full Text PDFTryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates.
View Article and Find Full Text PDF