Significance: Stroke is the leading cause of chronic disability in the United States. How stroke size affects post-stroke repair and recovery is poorly understood.
Aim: We aim to investigate the effects of stroke size on early repair patterns and determine how early changes in neuronal circuits and networks predict functional outcomes after stroke.
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked.
View Article and Find Full Text PDFBackground: Motor mapping allows for determining the macroscopic organization of motor circuits and corresponding motor movement representations on the cortex. Techniques such as intracortical microstimulation (ICMS) are robust, but can be time consuming and invasive, making them non-ideal for cortex-wide mapping or longitudinal studies. In contrast, optogenetic motor mapping offers a rapid and minimally invasive technique, enabling mapping with high spatiotemporal resolution.
View Article and Find Full Text PDFNeurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.
View Article and Find Full Text PDFA single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics.
View Article and Find Full Text PDFA classic example of experience-dependent plasticity is ocular dominance (OD) shift, in which the responsiveness of neurons in the visual cortex is profoundly altered following monocular deprivation (MD). It has been postulated that OD shifts also modify global neural networks, but such effects have never been demonstrated. Here, we use wide-field fluorescence optical imaging (WFOI) to characterize calcium-based resting-state functional connectivity during acute (3 d) MD in female and male mice with genetically encoded calcium indicators (-GCaMP6f).
View Article and Find Full Text PDFA classic example of experience-dependent plasticity is ocular dominance (OD) shift, in which the responsiveness of neurons in the visual cortex is profoundly altered following monocular deprivation (MD). It has been postulated that OD shifts also modify global neural networks, but such effects have never been demonstrated. Here, we used longitudinal wide-field optical calcium imaging to measure resting-state functional connectivity during acute (3-day) MD in mice.
View Article and Find Full Text PDFFunctional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function.
View Article and Find Full Text PDFBackground: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2021
To compare neuroimaging data between subjects, images from individual sessions need to be aligned to a common reference or "atlas." Atlas registration of optical intrinsic signal imaging of mice, for example, is commonly performed using affine transforms with parameters determined by manual selection of canonical skull landmarks. Errors introduced by such procedures have not previously been investigated.
View Article and Find Full Text PDFOptical neuromonitoring provides insight into neurovascular physiology and brain structure and function. These methods rely on spectroscopy to relate light absorption changes to variation of concentrations of physiologic chromophores such as oxy- and deoxyhemoglobin. In clinical or preclinical practice, data quality can vary significantly across wavelengths.
View Article and Find Full Text PDFResting-state functional connectivity analysis using optical neuroimaging holds the potential to be a powerful bridge between mouse models of disease and clinical neurologic monitoring. However, analysis techniques specific to optical methods are rudimentary, and algorithms from magnetic resonance imaging are not always applicable to optics. We have developed visual processing tools to increase data quality, improve brain segmentation, and average across sessions with better field-of-view.
View Article and Find Full Text PDF