Am J Physiol Heart Circ Physiol
February 2019
Cardiac fibroblast growth factor 2 (FGF2) exerts multiple paracrine activities related to cardiac response to injury. Endogenous FGF2 is composed of a mixture of 70% high- and 30% low-molecular-weight isoforms (Hi-FGF2 and Lo-FGF2, respectivley); although exogenously added Lo-FGF2 is cardioprotective, the roles of endogenous Hi-FGF2 or Lo-FGF2 have not been well defined. Therefore, we investigated the effect of elimination of Hi-FGF2 expression on susceptibility to acute cardiac damage in vivo caused by an injection of the genotoxic drug doxorubicin (Dox).
View Article and Find Full Text PDFFibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2.
View Article and Find Full Text PDFAims: fibroblast growth factor-2 (FGF-2), implicated in paracrine induction of cardiac hypertrophy, is translated as high molecular weight (Hi-FGF-2) and low molecular weight (Lo-FGF-2) isoforms. Paracrine activities are assigned to Lo-FGF-2, whereas Hi-FGF-2 is presumed to have nuclear functions. In this work, we re-examined the latter presumption by asking whether: cardiac non-myocytes (CNMs) accumulate and export Hi-FGF-2 in response to pro-hypertrophic [angiotensin II (Ang II)] stimuli; an unconventional secretory pathway requiring activated caspase-1 affects Hi-FGF2 export; and secreted Hi-FGF-2 is pro-hypertrophic.
View Article and Find Full Text PDFA high-lipid diet (HLD) may lead to adverse left ventricular (LV) remodeling and endothelial dysfunction in conditions of hemodynamic stress. Although congenital absence of nitric oxide synthase 3 (NOS3) leads to adverse LV remodeling after transverse aortic constriction (TAC), the effects of a HLD in this state remains unknown. Wild-type (WT) and NOS3 knockout mice (NOS3(-/-)) were randomized into the following 4 groups: 1) WT + low-lipid diet (LLD) (10% of energy); 2) WT + HLD (60% of energy); 3) NOS3(-/-) + LLD; and 4) NOS3(-/-) + HLD for a total of 12 wk.
View Article and Find Full Text PDFIn fibrosing hearts, myofibroblasts are associated with cardiac extracellular matrix remodeling. Expression of key genes in the transition of cardiac fibroblast to myofibroblast phenotype in post-myocardial infarction heart and in vitro has not been well addressed. Contractile, focal adhesion-associated, receptor proteins, fibroblast growth factor-2 (FGF-2) expression, and motility were compared to assess phenotype in adult and neonatal rat cardiac fibroblasts and myofibroblasts.
View Article and Find Full Text PDFBoosting myocardial resistance to acute as well as chronic ischemic damage would ameliorate the detrimental effects of numerous cardiac pathologies and reduce the probability of transition to heart failure. Experimental cardiology has pointed to ischemic and pharmacological pre- as well as post-conditioning as potent acute cardioprotective manipulations. Additional exciting experimental strategies include the induction of true regenerative and/or angiogenic responses to the damaged heart, resulting in sustained structural and functional beneficial effects.
View Article and Find Full Text PDF