Publications by authors named "Jon-Duri Tratschin"

The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138.

View Article and Find Full Text PDF

Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (N(pro)) is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53.

View Article and Find Full Text PDF

Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease.

View Article and Find Full Text PDF

Pestiviruses, such as bovine viral diarrhea virus and classical swine fever virus (CSFV), use the viral protein N(pro) to subvert host cell antiviral responses. N(pro) is the first protein encoded by the single large open reading frame of the pestivirus positive-sense RNA genome and has an autoproteolytic activity, cleaving itself off from the polyprotein. N(pro) also targets interferon regulatory factor 3 (IRF3), a transcription factor for alpha/beta interferon genes, and promotes its proteasomal degradation, a process that is independent of the proteolytic activity of N(pro).

View Article and Find Full Text PDF

Pestiviruses prevent alpha/beta interferon (IFN-alpha/beta) production by promoting proteasomal degradation of interferon regulatory factor 3 (IRF3) by means of the viral N(pro) nonstructural protein. N(pro) is also an autoprotease, and its amino-terminal coding sequence is involved in translation initiation. We previously showed with classical swine fever virus (CSFV) that deletion of the entire N(pro) gene resulted in attenuation in pigs.

View Article and Find Full Text PDF

The nonstructural protein NS2-3 of pestiviruses undergoes tightly regulated processing. For bovine viral diarrhea virus it was shown that uncleaved NS2-3 is required for infectious particle formation while cleaved NS3 is essential for genome replication. To further investigate the functions of NS2-3 and NS4A in the pestivirus life cycle, we established T7 RNA polymerase-dependent trans-complementation for p7-NS2-3-4A of classical swine fever virus (CSFV).

View Article and Find Full Text PDF

Viruses have evolved a multitude of strategies to subvert the innate immune system by interfering with components of the alpha/beta interferon (IFN-alpha/beta) induction and signaling pathway. It is well established that the pestiviruses prevent IFN-alpha/beta induction in their primary target cells, such as epitheloidal and endothelial cells, macrophages, and conventional dendritic cells, a phenotype mediated by the viral protein N(pro). Central players in the IFN-alpha/beta induction cascade are interferon regulatory factor 3 (IRF3) and IRF7.

View Article and Find Full Text PDF

Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established.

View Article and Find Full Text PDF

Classical swine fever virus (CSFV) protects cells from double-stranded (ds) RNA-mediated apoptosis and IFN-alpha/beta induction. This phenotype is lost when CSFV lacks N(pro) (DeltaN(pro) CSFV). In the present study, we demonstrate that N(pro) counteracts dsRNA-mediated apoptosis and IFN-alpha/beta induction independently of other CSFV elements.

View Article and Find Full Text PDF

A cDNA clone of the classical swine fever virus (CSFV) strain Alfort/187 [Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 1996;70(6):3478-87] was used to construct two E2 deletion mutants lacking either the complete E2 gene or, alternatively, a stretch of 204 nucleotides encoding 68 amino acids located in the C-terminal region of the E2 glycoprotein.

View Article and Find Full Text PDF

We have reported earlier that replacement of the N(pro) gene of classical swine fever virus (CSFV) by the murine ubiquitin gene only slightly affects the characteristics of virus replication in the porcine kidney cell line SK-6 [J. Virol. 72 (1998) 7681].

View Article and Find Full Text PDF

The virulence of classical swine fever virus (CSFV) strains including established laboratory strains as well as field isolates ranges from avirulent to highly virulent. Here, we describe the construction and characterisation of two cDNA-derived CSFV strains, each corresponding to one of these extremes. The recombinant virus vEy-37 caused acute disease indistinguishable from that provoked by infection with the highly virulent parent strain Eystrup.

View Article and Find Full Text PDF

Classical swine fever virus (CSFV) replicates efficiently in cell lines and monocytic cells, including macrophages (MPhi), without causing a cytopathic effect or inducing interferon (IFN) secretion. In the present study, the capacity of CSFV to interfere with cellular antiviral activity was investigated. When the porcine kidney cell line SK-6 was infected with CSFV, there was a 100-fold increased capacity to resist to apoptosis induced by polyinosinic-polycytidylic acid [poly(IC)], a synthetic double-stranded RNA.

View Article and Find Full Text PDF

Two types of porcine reproductive and respiratory syndrome virus (PRRSV) have been reported, the European type (EU PRRSV) and the North American type (US PRRSV). We developed a dual enzyme-linked immunosorbent assay (ELISA) for the simultaneous detection and differentiation of serum antibodies directed against either of the two PRRSV types. This tandem PRRS ELISA is based on affinity-purified recombinant nucleocapsid protein expressed in Escherichia coli.

View Article and Find Full Text PDF

Bicistronic genomes of the classical swine fever virus (CSFV) strain Alfort/187 (A187) were established by insertion of a second cistron consisting of an internal ribosome entry site of the encephalomyocarditis virus and a coding sequence in the 3' untranslated region of the genome. Introduction of the selectable marker gene for neomycin phosphotransferase into the second cistron of the CSFV replicon A187 Delta E2-CAT allowed the establishment of porcine SK-6 cell lines constitutively expressing the respective bicistronic replicon RNA. In cells transfected with RNA representing the full-length viral genome and containing the gene coding for bacterial enhanced green fluorescence protein (EGFP) in the second cistron infectious bicistronic virus was synthesized.

View Article and Find Full Text PDF