Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design.
View Article and Find Full Text PDFKDM6A (UTX) and KDM6B (JMJD3) are human non-heme Fe(II) and 2-oxoglutarate (2OG) dependent JmjC oxygenases that catalyze the demethylation of trimethylated lysine 27 in the N-terminal tail of histone H3, a post-translational modification that regulates transcription. A Combined Quantum Mechanics/ Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) study on the catalytic mechanism of KDM6A/B reveals that the transition state for the rate-limiting hydrogen atom transfer (HAT) reaction in KDM6A catalysis is stabilized by polar (Asn217) and aromatic (Trp369)/non-polar (Pro274) residues in contrast to KDM4, KDM6B and KDM7 demethylases where charged residues (Glu, Arg, Asp) are involved. KDM6A employs both σ- and π-electron transfer pathways for HAT, whereas KDM6B employs the σ-electron pathway.
View Article and Find Full Text PDFInvited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University, University of Oxford, and Michigan State University. The image depicts the oxygen diffusion channel in class 7 histone demethylase (PHF8) and ethylene-forming enzyme (EFE) and changes in the enzymes' conformations upon binding.
View Article and Find Full Text PDFThis study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme Fe /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line Fe -OO⋅ intermediate in PHF8 and the off-line Fe -OO⋅ intermediate in EFE.
View Article and Find Full Text PDFFe(II)-dependent oxygenases employ hydrogen atom transfer (HAT) to produce a myriad of products. Understanding how such enzymes use dynamic processes beyond the immediate vicinity of the active site to control the selectivity and efficiency of HAT is important for metalloenzyme engineering; however, obtaining such knowledge by experiments is challenging. This study develops a computational framework for identifying second coordination sphere (SCS) and especially long-range (LR) residues relevant for catalysis through dynamic cross-correlation analysis (DCCA) using the human histone demethylase PHF8 (KDM7B) as a model oxygenase.
View Article and Find Full Text PDF