Biochem Biophys Res Commun
May 2017
Parkinson's disease has long been associated with redox imbalance and oxidative stress in dopaminergic neurons. The catecholaldehyde hypothesis proposes that 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate product of dopamine catabolism, is a central nexus in a network of pathways leading to disease-state neurodegeneration, owing to its toxicity and potent ability to oligomerize α-synuclein, the main component of protein aggregates in Lewy bodies. In this work we examine the connection between reactive oxygen species and DOPAL autoxidation.
View Article and Find Full Text PDFParkinson's disease has long been known to involve the loss of dopaminergic neurons in the substantia nigra and the coincidental appearance of Lewy bodies containing oligomerized forms of α-synuclein. The "catecholaldehyde hypothesis" posits a causal link between these two central pathologies mediated by 3,4-dihydroxyphenylacetaldehyde (DOPAL), the most toxic dopamine metabolite. Here we determine the structure of the dominant product in reactions between DOPAL and α-synuclein, a dicatechol pyrrole lysine adduct.
View Article and Find Full Text PDFSsu72 helps regulate transcription and co-transcriptional mRNA processing by dephosphorylating serine residues at the 5th position in the heptad repeats of the C-terminal domain of RNA polymerase II. Here we use multidimensional, multinuclear NMR experiments to assign the backbone and side-chain resonances of the 23 kDa Ssu72 from Drosophila melanogaster in the phosphate-bound state, and use NMR titrations to examine the phosphate-binding properties of three active site mutants.
View Article and Find Full Text PDFRNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P)(5) CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P)(5)-Pro(6) motif in the cis configuration.
View Article and Find Full Text PDFAmide-amide NOESY provides important distance constraints for calculating global folds of large proteins, especially integral membrane proteins with beta-barrel folds. Here, we describe a diagonal-suppressed 4-D NH-NH TROSY-NOESY-TROSY (ds-TNT) experiment for NMR studies of large proteins. The ds-TNT experiment employs a spin state selective transfer scheme that suppresses diagonal signals while providing TROSY optimization in all four dimensions.
View Article and Find Full Text PDFAmong the suite of commonly used backbone experiments, HNCACO presents an unresolved sensitivity limitation due to fast 13CO transverse relaxation and passive 13Calpha-13Cbeta coupling. Here, we present a high-sensitivity 'just-in-time' (JIT) HN(CA)CO pulse sequence that uniformly refocuses 13Calpha-13Cbeta coupling while collecting 13CO shifts in real time. Sensitivity comparisons of the 3-D JIT HN(CA)CO, a CT-HMQC-based control, and a HSQC-based control with selective 13Calpha inversion pulses were performed using a 2H/13C/15N labeled sample of the 29 kDa HCA II protein at 15 degrees C.
View Article and Find Full Text PDF