Publications by authors named "Jon Uranga"

Article Synopsis
  • Antiviral drugs targeting SARS-CoV-2, particularly the main protease (M), are crucial for preventing future COVID outbreaks.
  • The study reveals that M undergoes redox regulation, switching between an active dimer and a dormant monomer, affecting its function through modifications of specific cysteine residues.
  • The findings also identify potential druggable sites in the form of conserved redox switches, which could be found in main proteases of other coronaviruses like MERS-CoV and SARS-CoV.
View Article and Find Full Text PDF

The activation mechanism of thiamine diphosphate (ThDP) in enzymes has long been the subject of intense research and controversial discussion. Particularly contentious is the formation of a carbene intermediate, the first one observed in an enzyme. For the formation of the carbene to take place, both intramolecular and intermolecular proton transfer pathways have been proposed.

View Article and Find Full Text PDF

Recently, a new naturally occurring covalent linkage was characterised, involving a cysteine and a lysine, bridged through an oxygen atom. The latter was dubbed as the NOS bond, reflecting the individual atoms involved in this uncommon bond which finds little parallel in lab chemistry. It is found to form under oxidising conditions and is reversible upon addition of reducing agents.

View Article and Find Full Text PDF

Peptide-protein interactions (PPIs) are facilitated by the well-defined three-dimensional structure of bioactive peptides, interesting compounds for the development of new therapeutic agents. Their secondary structure and thus their propensity to engage in PPIs can be influenced by the introduction of peptide staples on the side chains. In particular, light-controlled staples based on azobenzene photoswitches and their structural influence on helical peptides have been studied extensively.

View Article and Find Full Text PDF

The unconventional bioorthogonal catalytic activation of anticancer metal complexes by flavin and flavoproteins photocatalysis has been reported recently. The reactivity is based on a two-electron redox reaction of the photoactivated flavin. Furthermore, when it comes to flavoproteins, we recently reported that site mutagenesis can modulate and improve this catalytic activity in the mini Singlet Oxygen Generator protein (SOG).

View Article and Find Full Text PDF

The enzyme acetoacetate decarboxylase (AAD) has a crucial function in the process of decarboxylating the substrate acetoacetate (AA). It has been extensively studied over the years, but its exact catalytic mechanism has remained partly unsolved due to the difficulty in assessing reaction intermediates. In this study, we combine molecular dynamics and electronic structure calculations to rediscover its catalytic mechanism.

View Article and Find Full Text PDF

We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link.

View Article and Find Full Text PDF
Article Synopsis
  • - Disulfide bonds in proteins, formed by cysteine residues, play key roles in maintaining protein structure, stability, and function, while also being involved in redox reactions and cellular signaling amidst oxidative stress.
  • - This study identifies a novel covalent crosslink (NOS bridge) between a cysteine and a lysine residue in the transaldolase enzyme of Neisseria gonorrhoeae, which functions as an allosteric redox switch to enhance enzymatic activity significantly.
  • - The research highlights that this redox switch mechanism is conserved in related enzymes from other pathogens and indicates the presence of similar NOS bridges in diverse proteins across different life forms, suggesting a broader regulatory role.
View Article and Find Full Text PDF

The 20S proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells and in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome (caspase-like), an aspect which is often neglected despite the crucial role protons play in the catalysis.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the molecular mechanisms of cooperativity and allosteric regulation in proteins, specifically focusing on low-barrier hydrogen bonds as key elements in signaling pathways within multimeric enzymes like haemoglobin and aspartate transcarbamoylase.
  • Researchers used ultra-high-resolution X-ray crystallography to observe these hydrogen bonds, confirming their role in coordinating catalytic events and facilitating communication across the protein structure like an atomistic Newton's cradle.
  • The findings suggest that low-barrier hydrogen bonds are crucial for enzyme cooperativity and may inform future practices in drug and enzyme design, allowing for deliberate manipulation of protein sequences to enhance long-range regulation.
View Article and Find Full Text PDF

Hydroxyl radical (OH) is known to be highly reactive. Herein, we analyze the oxidation of acid (Asp and Glu), base (Arg and Lys), and amide (Asn and Gln) containing amino acid derivatives by the consecutive attack of two OH. In this work, we study the reaction pathway by means of density functional theory.

View Article and Find Full Text PDF

We have investigated whether alchemical free-energy perturbation calculations of relative binding energies can be sped up by simulating a truncated protein. Previous studies with spherical nonperiodic systems showed that the number of simulated atoms could be reduced by a factor of 26 without affecting the calculated binding free energies by more than 0.5 kJ/mol on average ( Genheden, S.

View Article and Find Full Text PDF

This work presents the mechanism of the photoinduced generation of reactive oxygen species (ROS) by paramagnetic copper porphyrins in aqueous solution. Electronic structure calculations within the framework of the (time-dependent) density functional theory, (TD)DFT, reveal the details regarding the development of the atomistic and electronic structures of the copper porphyrin in solution along the set of chemical reactions accessible upon photoactivation. This study identifies the key parameters controlling the feasibility of the various reaction pathways that drive the formation of specific reactive oxygen species, ROS, i.

View Article and Find Full Text PDF

This study presents a methodology for the automated analysis of commercial medium-range sonar signals for detecting presence/absence of bluefin tuna (Tunnus thynnus) in the Bay of Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each sonar image we extracted measurable regions and analyzed their characteristics.

View Article and Find Full Text PDF

Hydroxyl radical (˙OH) is known to be one of the most reactive species. In this work, the hydrogen abstraction by ˙OH from C and C atoms of all amino acids is studied in the framework of density functional theory as this is the most favorable reaction mechanism when this kind of radical attacks a protein. From the myriad routes that the oxidation of a protein by a ˙OH radical may follow, fragmentation of the protein is one of the most damaging ones as it hampers the normal function of the protein.

View Article and Find Full Text PDF

The hydroxyl radical is the most reactive oxygen species, and it is able to attack macromolecules such as proteins. Such oxidation processes are the cause of a number of diseases. Several oxidized products have been experimentally characterized, but the reaction pathways remain unclear.

View Article and Find Full Text PDF

Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent's rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals-molecular orbital (LCAO-MO) methods.

View Article and Find Full Text PDF